Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Mg-Li-Al-Zn-Si alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 13655 KiB  
Review
Significance of Alloying Elements on the Mechanical Characteristics of Mg-Based Materials for Biomedical Applications
by Sachin Kumar Sharma, Kuldeep Kumar Saxena, Vinayak Malik, Kahtan A. Mohammed, Chander Prakash, Dharam Buddhi and Saurav Dixit
Crystals 2022, 12(8), 1138; https://doi.org/10.3390/cryst12081138 - 12 Aug 2022
Cited by 85 | Viewed by 8874
Abstract
Magnesium alloys are widely employed in various applications due to their high strength-to-weight ratio and superior mechanical properties as compared to unalloyed Magnesium. Alloying is considered an important way to enhance the strength of the metal matrix composite but it significantly influences the [...] Read more.
Magnesium alloys are widely employed in various applications due to their high strength-to-weight ratio and superior mechanical properties as compared to unalloyed Magnesium. Alloying is considered an important way to enhance the strength of the metal matrix composite but it significantly influences the damping property of pure magnesium, while controlling the rate of corrosion for Mg-based material remains critical in the biological environment. Therefore, it is essential to reinforce the magnesium alloy with a suitable alloying element that improves the mechanical characteristics and resistance to corrosion of Mg-based material. Biocompatibility, biodegradability, lower stress shielding effect, bio-activeness, and non-toxicity are the important parameters for biomedical applications other than mechanical and corrosion properties. The development of various surface modifications is also considered a suitable approach to control the degradation rate of Mg-based materials, making lightweight Mg-based materials highly suitable for biomedical implants. This review article discusses the various binary and ternary Mg alloys, which are mostly composed of Al, Ca, Zn, Mn, and rare earth (RE) elements as well as various non-toxic elements which are Si, Bi, Ag, Ca, Zr, Zn, Mn, Sr, Li, Sn, etc. The effects of these alloying elements on the microstructure, the mechanical characteristics, and the corrosion properties of Mg-based materials were analyzed. The mechanical and corrosion behavior of Mg-based materials depends upon the percentage of elements and the number of alloying elements used in Mg. The outcomes suggested that ZEK100, WE43, and EW62 (Mg-6% Nd-2% Y-0.5% Zr) alloys are effectively used for biomedical applications, having preferable biodegradable, biocompatible, bioactive implant materials with a lower corrosion rate. Full article
Show Figures

Figure 1

17 pages, 108914 KiB  
Article
Hot Deformation Behavior and Microstructural Evolution Based on the Processing Map of Dual-Phase Mg-Li Based Alloy
by Jiangtao Guo, Shengli Guo, Yazhao Shen and Defu Li
Materials 2022, 15(3), 1022; https://doi.org/10.3390/ma15031022 - 28 Jan 2022
Cited by 5 | Viewed by 2588
Abstract
The deformation behavior of the as-extruded Mg-Li-Al-Zn-Si alloy was studied by conducting a hot compression test, with a temperature range of 180–330 °C and a strain rate range of 0.01–10 s−1. The constitutive relationship of flow stress, temperature, and strain rate [...] Read more.
The deformation behavior of the as-extruded Mg-Li-Al-Zn-Si alloy was studied by conducting a hot compression test, with a temperature range of 180–330 °C and a strain rate range of 0.01–10 s−1. The constitutive relationship of flow stress, temperature, and strain rate was expressed by the Zener–Hollomon parameter and included the Arrhenius term. By considering the effect of strain on the material constants, the flow stress at 240–330 °C could be precisely predicted with the constitutive equation (incorporating the influence of strain). A processing map was established at the strain of 0.7. The unsafe domains that are characterized by uneven microstructures were detected at low temperatures (<230 °C) or high temperatures (>280 °C), with high strain rates (>1 s−1). The optimum hot deformation region was obtained at a medium temperature (270–300 °C), with a peak power dissipation efficiency of 0.44. The microstructural evolution in different domains is investigated. The unstable domains are characterized by a non-uniform flow behavior and uneven microstructure. The observation showed that the dynamic recrystallization (DRX) process could easily occur at the safe domain with high power dissipation efficiency. For the α-phase, some features of continuous dynamic recrystallization can be found. The triple points serve as prominent nucleation sites for the β-phase DRX grains and the growth in the grains was carried out by subgrain boundary migration. The microstructure exhibits characteristics of discontinuous dynamic recrystallization. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop