Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Mauremys reevesii

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2172 KiB  
Article
Genetic Diversity and Population Structure of the Chinese Three-Keeled Pond Turtle (Mauremys reevesii)
by Chenyao Zhou, Haoyang Xu, Haiyang Liu, Jipeng Li, Wei Li, Xiaoyou Hong, Chen Chen, Liqin Ji, Xinping Zhu, Bo Zhao and Xiaoli Liu
Int. J. Mol. Sci. 2025, 26(12), 5614; https://doi.org/10.3390/ijms26125614 - 11 Jun 2025
Viewed by 436
Abstract
To investigate the genetic diversity and structure of farmed Chinese three-keeled pond turtles (Mauremys reevesii), we performed whole-genome resequencing on 238 individuals from eight farms across six Chinese regions. Genetic diversity indices (nucleotide diversity π, inbreeding coefficient FHOM, polymorphism [...] Read more.
To investigate the genetic diversity and structure of farmed Chinese three-keeled pond turtles (Mauremys reevesii), we performed whole-genome resequencing on 238 individuals from eight farms across six Chinese regions. Genetic diversity indices (nucleotide diversity π, inbreeding coefficient FHOM, polymorphism information content PIC, observed heterozygosity Ho), principal component analysis (PCA), phylogenetic reconstruction, and population structure analysis were integrated. The results revealed that the Guangdong Maoming (MM) and Anhui Wuwei (WW) populations exhibited the highest genetic diversity (MM: PIC = 0.149, Ho = 0.299; WW: PIC = 0.144, Ho = 0.287), while the Guangdong Huizhou (HZ) and Hunan Changhan (CH) populations showed the lowest diversity due to elevated inbreeding coefficients (HZ: FHOM = 0.043; CH: FHOM = 0.041). Low genetic differentiation (Fst = 0.00043–0.04758) indicated limited population divergence. However, PCA and phylogenetic analysis demonstrated that MM and Guangxi Pingxiang (PX) populations formed distinct genetic clusters, suggesting that management differences might contribute to their genetic uniqueness. Admixture analysis identified K = 2 (based on the lowest cross-validation error) as the optimal ancestral cluster number, with MM and PX populations displaying admixed genetic backgrounds while others showed homogeneous compositions. Conservation priorities should focus on preserving MM and PX’s unique genetic resources, introducing genetic material to high-inbreeding populations, and establishing interregional breeding networks. This study provides genomic insights for germplasm conservation and sustainable utilisation of M. reevesii. Full article
Show Figures

Figure 1

13 pages, 1883 KiB  
Article
Geographical Distribution of Mauremys sinensis, Mauremys reevesii, and Their Hybrids in South Korea
by Hae-Jun Baek, Eujin Cheong, Youngha Kim, Kyo Soung Koo, Su-Hwan Kim, Chang-Deuk Park and Ju-Duk Yoon
Animals 2024, 14(18), 2626; https://doi.org/10.3390/ani14182626 - 10 Sep 2024
Cited by 3 | Viewed by 2009
Abstract
The Chinese striped-necked turtle Mauremys sinensis, introduced into South Korea presumably in 2012, is considered an invasive alien species owing to its devastating impact, including hybridization with the native protected species Reeves’ turtle M. reevesii. Recently, the presence of M. sinensis [...] Read more.
The Chinese striped-necked turtle Mauremys sinensis, introduced into South Korea presumably in 2012, is considered an invasive alien species owing to its devastating impact, including hybridization with the native protected species Reeves’ turtle M. reevesii. Recently, the presence of M. sinensis has been confirmed throughout the country, and several sympatric areas with M. reevesii have been reported. Thus, field surveys were conducted at 47 sites across M. sinensis and M. reevesii habitats in South Korea to determine the extent of hybridization. Five sympatric sites were confirmed, and hybrid individuals were identified at four sites. Genetic analyses (COI and R35) of two individuals from Jeju Island confirmed maternal M. reevesii and paternal M. sinensis lineages. Hybridization presumably does not occur under natural conditions, and the hybrids likely originated from captive breeding. This study identifies for the first time the habitats of M. sinensis and its hybrids in the wild of South Korea. The management measures proposed in the current study could be of value for the conservation of the native species; however, our study did not include reproductive monitoring, and there is a need for such surveys as well as for systematic management of non-native turtles introduced into South Korea. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

14 pages, 11156 KiB  
Article
Chromium Affects Mitochondrial Function, Leading to Apoptosis and Autophagy in Turtle Primary Hepatocytes
by Shuqin Lin, Yunjuan Xiao, Jing Lin, Yue Yuan, Haitao Shi, Meiling Hong and Li Ding
Animals 2024, 14(16), 2403; https://doi.org/10.3390/ani14162403 - 19 Aug 2024
Cited by 1 | Viewed by 1935
Abstract
Hexavalent chromium (Cr(VI)), a pervasive industrial contaminant, is highly toxic to both humans and animals. However, its effects on turtles are largely unexplored. Our study aimed to investigate the toxic effects of Cr(VI) on the Reeves’ turtles (Mauremys reevesii) primary hepatocytes. [...] Read more.
Hexavalent chromium (Cr(VI)), a pervasive industrial contaminant, is highly toxic to both humans and animals. However, its effects on turtles are largely unexplored. Our study aimed to investigate the toxic effects of Cr(VI) on the Reeves’ turtles (Mauremys reevesii) primary hepatocytes. We exposed hepatocytes to two concentrations (25 μM and 50 μM) of Cr(VI) for 24 h. The results showed that compared to controls, Cr(VI)-treated cells showed elevated antioxidant enzyme activity (catalase (CAT) and superoxide dismutase (SOD)) and increased reactive oxygen species (ROS) levels. Adenosine triphosphatae (ATP) levels decreased, indicating mitochondrial dysfunction. Additionally, we found significant changes in mitochondrial dynamics related genes, with downregulation of mitofusin 2 (Mfn2) and silent information regulator 1 (SIRT1) and a decrease in sirtuin 3 (SIRT3) and tumor protein 53 (p53) mRNA levels. Annexin V-FITC fluorescence staining-positive cells increased with higher Cr(VI) concentrations, marked by elevated bcl-2-associated X protein (Bax) and cysteinyl aspartate specific proteinase (Caspase3) mRNA levels and reduced B-cell lymphoma-2 (Bcl2) expression. Autophagy-related genes were also affected, with increased microtubule-associated protein 1 light chain 3 (LC3-I), microtubule-associated protein light chain 3II (LC3-II), unc-51-like autophagy-activating kinase 1 (ULK1), and sequestosome 1 (p62/SQSTM1) mRNA levels and decreased mammalian target of rapamycin (mTOR) and Beclin1 expression. Taken together, Cr(VI) promotes cell apoptosis and autophagy in turtle hepatocytes by inducing oxidative stress and disrupting mitochondrial function. These findings highlight the serious health risks posed by Cr(VI) pollution and emphasize the need for protecting wild turtle populations. Full article
(This article belongs to the Special Issue Aquatic Animal Medicine and Pathology)
Show Figures

Figure 1

15 pages, 2080 KiB  
Article
Impact of Personality Trait Interactions on Foraging and Growth in Native and Invasive Turtles
by Lin Gan, Shufang Zhang, Ruyi Zeng, Tianyi Shen, Liu Tian, Hao Yu, Ke Hua and Yue Wang
Animals 2024, 14(15), 2240; https://doi.org/10.3390/ani14152240 - 1 Aug 2024
Cited by 2 | Viewed by 1402
Abstract
Animal personalities play a crucial role in invasion dynamics. During the invasion process, the behavioral strategies of native species vary among personalities, just as the invasive species exhibit variations in behavior strategies across personalities. However, the impact of personality interactions between native species [...] Read more.
Animal personalities play a crucial role in invasion dynamics. During the invasion process, the behavioral strategies of native species vary among personalities, just as the invasive species exhibit variations in behavior strategies across personalities. However, the impact of personality interactions between native species and invasive species on behavior and growth are rarely illustrated. The red-eared slider turtle (Trachemys scripta elegans) is one of the worst invasive species in the world, threatening the ecology and fitness of many freshwater turtles globally. The Chinese pond turtle (Mauremys reevesii) is one of the freshwater turtles most threatened by T. scripta elegans in China. In this study, we used T. scripta elegans and M. reevesii to investigate how the personality combinations of native and invasive turtles would impact the foraging strategy and growth of both species during the invasion process. We found that M. reevesii exhibited bolder and more exploratory personalities than T. scripta elegans. The foraging strategy of M. reevesii was mainly affected by the personality of T. scripta elegans, while the foraging strategy of T. scripta elegans was influenced by both their own personality and personalities of M. reevesii. Additionally, we did not find that the personality combination would affect the growth of either T. scripta elegans or M. reevesii. Differences in foraging strategy may be due to the dominance of invasive species and variations in the superficial exploration and thorough exploitation foraging strategies related to personalities. The lack of difference in growth may be due to the energy allocation trade-offs between personalities or be masked by the slow growth rate of turtles. Overall, our results reveal the mechanisms of personality interaction effects on the short-term foraging strategies of both native and invasive species during the invasion process. They provide empirical evidence to understand the effects of personality on invasion dynamics, which is beneficial for enhancing comprehension understanding of the personality effects on ecological interactions and invasion biology. Full article
(This article belongs to the Section Herpetology)
Show Figures

Figure 1

18 pages, 2034 KiB  
Article
Metagenomics Analysis Reveals the Composition and Functional Differences of Fecal Microbiota in Wild, Farm, and Released Chinese Three-Keeled Pond Turtles (Mauremys reevesii)
by Ijaz Khan, Rongping Bu, Zeeshan Ali, Muhammad Shahid Iqbal, Haitao Shi, Li Ding and Meiling Hong
Animals 2024, 14(12), 1750; https://doi.org/10.3390/ani14121750 - 10 Jun 2024
Cited by 5 | Viewed by 1790
Abstract
The intestine of living organisms harbors different microbiota associated with the biological functioning and health of the host and influences the process of ecological adaptation. Here, we studied the intestinal microbiota’s composition and functional differences using 16S rRNA and metagenomic analysis in the [...] Read more.
The intestine of living organisms harbors different microbiota associated with the biological functioning and health of the host and influences the process of ecological adaptation. Here, we studied the intestinal microbiota’s composition and functional differences using 16S rRNA and metagenomic analysis in the wild, farm, and released Chinese three-keeled pond turtle (Mauremys reevesii). At the phylum level, Bacteroidota dominated, followed by Firmicutes, Fusobacteriota, and Actinobacteriota in the wild group, but Chloroflexi was more abundant in the farm and released groups. Moreover, Chryseobacterium, Acinetobacter, Comamonas, Sphingobacterium, and Rhodobacter were abundant in the released and farm cohorts, respectively. Cetobacterium, Paraclostridium, Lysobacter, and Leucobacter showed an abundance in the wild group. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed that the relative abundance of most pathways was significantly higher in the wild turtles (carbohydrate metabolism, lipid metabolism, metabolism of cofactors, and vitamins). The comprehensive antibiotic resistance database (CARD) showed that the antibiotic resistance gene (ARG) subtype macB was the most abundant in the farm turtle group, while tetA was higher in the wild turtles, and srpYmcr was higher in the released group. Our findings shed light on the association between the intestinal microbiota of M. reevesii and its habitats and could be useful for tracking habitats to protect and conserve this endangered species. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

17 pages, 6602 KiB  
Article
Effect of Purslane (Portulaca oleracea L.) on Intestinal Morphology, Digestion Activity and Microbiome of Chinese Pond Turtle (Mauremys reevesii) during Aeromonas hydrophila Infection
by Shiyong Yang, Langkun Feng, Jiajin Zhang, Chaozhan Yan, Chaoyang Zhang, Yanbo Huang, Minghao Li, Wei Luo, Xiaoli Huang, Jiayun Wu, Xiaogang Du and Yunkun Li
Int. J. Mol. Sci. 2023, 24(12), 10260; https://doi.org/10.3390/ijms241210260 - 17 Jun 2023
Cited by 6 | Viewed by 2272
Abstract
Large-scale mortality due to Aeromonas hydrophila (A. hydrophila) infection has considerably decreased the yield of the Chinese pond turtle (Mauremys reevesii). Purslane is a naturally active substance with a wide range of pharmacological functions, but its antibacterial effect on [...] Read more.
Large-scale mortality due to Aeromonas hydrophila (A. hydrophila) infection has considerably decreased the yield of the Chinese pond turtle (Mauremys reevesii). Purslane is a naturally active substance with a wide range of pharmacological functions, but its antibacterial effect on Chinese pond turtles infected by A. hydrophila infection is still unknown. In this study, we investigated the effect of purslane on intestinal morphology, digestion activity, and microbiome of Chinese pond turtles during A. hydrophila infection. The results showed that purslane promoted epidermal neogenesis of the limbs and increased the survival and feeding rates of Chinese pond turtles during A. hydrophila infection. Histopathological observation and enzyme activity assay indicated that purslane improved the intestinal morphology and digestive enzyme (α-amylase, lipase and pepsin) activities of Chinese pond turtle during A. hydrophila infection. Microbiome analysis revealed that purslane increased the diversity of intestinal microbiota with a significant decrease in the proportion of potentially pathogenic bacteria (such as Citrobacter freundii, Eimeria praecox, and Salmonella enterica) and an increase in the abundance of probiotics (such as uncultured Lactobacillus). In conclusion, our study uncovers that purslane improves intestinal health to protect Chinese pond turtles against A. hydrophila infection. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

14 pages, 2613 KiB  
Article
Habitat Selection and Home Range of Reeves’ Turtle (Mauremys reevesii) in Qichun County, Hubei Province, China
by Rongping Bu, Zihao Ye and Haitao Shi
Animals 2023, 13(9), 1514; https://doi.org/10.3390/ani13091514 - 30 Apr 2023
Cited by 7 | Viewed by 2757
Abstract
Habitat selection and range are crucial factors in understanding the life history of species. We tracked 23 adult wild Reeves’ turtles (Mauremys reevesii) from August 2021 to August 2022 in Qichun County, Hubei Province, China, to study their habitat selection, home [...] Read more.
Habitat selection and range are crucial factors in understanding the life history of species. We tracked 23 adult wild Reeves’ turtles (Mauremys reevesii) from August 2021 to August 2022 in Qichun County, Hubei Province, China, to study their habitat selection, home range, and the characteristics of chosen habitats. Significant differences were observed in aquatic habitats, regarding shelter cover (Z = −6.032, p < 0.001), shelter height (Z = −6.783, p < 0.001), depth of water (Z = −2.009, p = 0.045), and distance from the edge (Z = −4.288, p < 0.001), between selected and random habitats. In terrestrial habitats, significant differences were observed in canopy cover (Z = −2.100, p = 0.036), herbage cover (Z = −2.347, p = 0.019), distance from the field edge (Z = −2.724, p = 0.006), dead grass cover (Z = −2.921, p = 0.003), and dead grass thickness (t = 3.735, df = 17, p = 0.002) between the selected and random habitats. The mean home range area observed for this turtle population was 14.34 ± 4.29 ha, the mean core home range was 2.91 ± 2.28 ha, and the mean line home range was 670.23 ± 119.62 m. This study provides valuable information on this endangered species, providing a foundation for the development of conservation plans. Full article
(This article belongs to the Topic Ecology, Management and Conservation of Vertebrates)
Show Figures

Figure 1

24 pages, 24302 KiB  
Article
Gene Regulation during Carapacial Ridge Development of Mauremys reevesii: The Development of Carapacial Ridge, Ribs and Scutes
by Jiayu Yang, Yingying Xia, Shaohu Li, Tingting Chen, Jilong Zhang, Zhiyuan Weng, Huiwei Zheng, Minxuan Jin, Chuanhe Bao, Shiping Su, Yangyang Liang and Jun Zhang
Genes 2022, 13(9), 1676; https://doi.org/10.3390/genes13091676 - 19 Sep 2022
Cited by 2 | Viewed by 2394
Abstract
The unique topological structure of a turtle shell, including the special ribs–scapula relationship, is an evolutionarily novelty of amniotes. The carapacial ridge is a key embryonic tissue for inducing turtle carapace morphologenesis. However, the gene expression profiles and molecular regulatory mechanisms that occur [...] Read more.
The unique topological structure of a turtle shell, including the special ribs–scapula relationship, is an evolutionarily novelty of amniotes. The carapacial ridge is a key embryonic tissue for inducing turtle carapace morphologenesis. However, the gene expression profiles and molecular regulatory mechanisms that occur during carapacial ridge development, including the regulation mechanism of rib axis arrest, the development mechanism of the carapacial ridge, and the differentiation between soft-shell turtles and hard-shell turtles, are not fully understood. In this study, we obtained genome-wide gene expression profiles during the carapacial ridge development of Mauremys reevesii using RNA-sequencing by using carapacial ridge tissues from stage 14, 15 and 16 turtle embryos. In addition, a differentially expressed genes (DEGs) analysis and a gene set enrichment analysis (GSEA) of three comparison groups were performed. Furthermore, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used to analyze the pathway enrichment of the differentially expressed genes of the three comparative groups. The result displayed that the Wnt signaling pathway was substantially enriched in the CrTK14 vs. the CrTK15 comparison group, while the Hedgehog signaling pathway was significantly enriched in the CrTK15 vs. the CrTK16 group. Moreover, the regulatory network of the Wnt signaling pathway showed that Wnt signaling pathways might interact with Fgfs, Bmps, and Shh to form a regulatory network to regulate the carapacial ridge development. Next, WGCNA was used to cluster and analyze the expression genes during the carapacial ridge development of M. reevesii and P. sinensis. Further, a KEGG functional enrichment analysis of the carapacial ridge correlation gene modules was performed. Interesting, these results indicated that the Wnt signaling pathway and the MAPK signaling pathway were significantly enriched in the gene modules that were highly correlated with the stage 14 and stage 15 carapacial ridge samples of the two species. The Hedgehog signaling pathway was significantly enriched in the modules that were strongly correlated with the stage 16 carapacial ridge samples of M. reevesii, however, the PI3K-Akt signaling and the TGF-β signaling pathways were significantly enriched in the modules that were strongly correlated with the stage 16 carapacial ridge samples of P. sinensis. Furthermore, we found that those modules that were strongly correlated with the stage 14 carapacial ridge samples of M. reevesii and P. sinensis contained Wnts and Lef1. While the navajo white 3 module which was strongly correlated with the stage 16 carapacial ridge samples of M. reevesii contained Shh and Ptchs. The dark green module strongly correlated with the stage 16 carapacial ridge samples of P. sinensis which contained Col1a1, Col1a2, and Itga8. Consequently, this study systematically revealed the signaling pathways and genes that regulate the carapacial ridge development of M. reevesii and P. sinensis, which provides new insights for revealing the molecular mechanism that is underlying the turtle’s body structure. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

9 pages, 552 KiB  
Article
Hibernation in Reeves’ Turtles (Mauremys reevesii) in Qichun County, Hubei Province, China: Hibernation Beginning and End and Habitat Selection
by Rongping Bu, Zihao Ye and Haitao Shi
Animals 2022, 12(18), 2411; https://doi.org/10.3390/ani12182411 - 14 Sep 2022
Cited by 6 | Viewed by 2526
Abstract
Hibernation protects turtles from extreme winter conditions. Reeves’ turtle (Mauremys reevesii) is a medium-sized aquatic turtle that lives in freshwater habitats in lowland areas with still or slowly moving water. Currently, little is known regarding its overwintering behavior. In the current [...] Read more.
Hibernation protects turtles from extreme winter conditions. Reeves’ turtle (Mauremys reevesii) is a medium-sized aquatic turtle that lives in freshwater habitats in lowland areas with still or slowly moving water. Currently, little is known regarding its overwintering behavior. In the current study, 20 Reeves’ turtles from the wild were investigated using radiotelemetry in the field to determine the beginning and end dates of, and habitat selected for, hibernation. Hibernation began in late October 2021 and arousal began in March 2022. Reeves’ turtles do not appear to be limited in their selection of suitable hibernation habitats, which included fish ponds, abandoned ponds (ponds not being used for farming), marshes, and abandoned fields (fields not being used for farming). In the aquatic hibernation habitats, only herbage cover was significantly different between the selected and random habitats (t = 2.525, df = 9, p = 0.033). In the terrestrial hibernation habitats, there were significant differences in the canopy (Z = −2.201, p = 0.028), slope gradient (Z = −2.032, p = 0.042), herbage cover (Z = −2.379, p = 0.017), and distance from the habitat edge (Z = −2.524, p = 0.012) between the selected and random habitats. This indicates that Reeves’ turtles prefer to hibernate at the soft edges of flat habitats with low canopy and high herbage cover when hibernating in terrestrial habitats and prefer to hibernate at sites with high herbage cover when hibernating in aquatic habitats. To the best of our knowledge, this is the first study to investigate hibernation in wild Reeves’ turtles in the field, and the results identify key ecological variables correlated with habitat selection during hibernation. This knowledge could inform local conservation measures related to farming activities. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

Back to TopTop