Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Massive Internet of Things (MIoT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3454 KiB  
Article
An Applied Analysis of Securing 5G/6G Core Networks with Post-Quantum Key Encapsulation Methods
by Paul Scalise, Robert Garcia, Matthew Boeding, Michael Hempel and Hamid Sharif
Electronics 2024, 13(21), 4258; https://doi.org/10.3390/electronics13214258 - 30 Oct 2024
Cited by 3 | Viewed by 3468
Abstract
Fifth Generation (5G) cellular networks have been adopted worldwide since the rollout began around 2019. It brought with it many innovations and new services, such as Enhanced Mobile Broadband (eMBB), Ultra Reliable and Low-Latency Communications (URLLC), and Massive Internet of Things (mIoT). Furthermore, [...] Read more.
Fifth Generation (5G) cellular networks have been adopted worldwide since the rollout began around 2019. It brought with it many innovations and new services, such as Enhanced Mobile Broadband (eMBB), Ultra Reliable and Low-Latency Communications (URLLC), and Massive Internet of Things (mIoT). Furthermore, 5G introduced a more scalable approach to network operations using fully software-based Virtualized Network Functions (VNF) in Core Networks (CN) rather than the prior hardware-based approach. However, while this shift towards a fully software-based system design provides numerous significant benefits, such as increased interoperability, scalability, and cost-effectiveness, it also brings with it an increased cybersecurity risk. Security is crucial to maintaining trust between vendors, operators, and consumers. Cyberattacks are rapidly increasing in number and sophistication, and we are seeing a shift towards zero-trust approaches. This means that even communications between VNFs inside a 5G core must be scrutinized and hardened against attacks, especially with the advent of quantum computers. The National Institute of Standards and Technology (NIST), over the past 10 years, has led efforts to standardize post-quantum cryptography (PQC) to protect against quantum attacks. This paper covers a custom implementation of the open-source free5GC CN, to expand its HTTPS capabilities for VNFs by introducing PQC Key Encapsulation Methods (KEM) for Transport Layer Security (TLS) v1.3. This paper provides the details of this integration with a focus on the latency of different PQC KEMs in initial handshakes between VNFs, on packet size, and the implications in a 5G environment. This work also conducts a security comparison between the PQC-equipped free5GC and other open-source 5G CNs. The presented results indicate a negligible increase in UE connection setup duration and a small increase in connection setup data requirements, strongly indicating that PQC KEM’s benefits far outweigh any downsides when integrated into 5G and 6G core services. To the best of our knowledge, this is the first work incorporating PQC into an open-source 5G core. Furthermore, the results from this effort demonstrate that employing PQC ciphers for securing VNF communications results in only a negligible impact on latency and bandwidth usage, thus demonstrating significant benefits to 5G cybersecurity. Full article
Show Figures

Figure 1

16 pages, 5243 KiB  
Article
Publish/Subscribe Method for Real-Time Data Processing in Massive IoT Leveraging Blockchain for Secured Storage
by Mohammadhossein Ataei, Ali Eghmazi, Ali Shakerian, Rene Landry and Guy Chevrette
Sensors 2023, 23(24), 9692; https://doi.org/10.3390/s23249692 - 8 Dec 2023
Cited by 3 | Viewed by 5977
Abstract
In the Internet of Things (IoT) era, the surge in Machine-Type Devices (MTDs) has introduced Massive IoT (MIoT), opening new horizons in the world of connected devices. However, such proliferation presents challenges, especially in storing and analyzing massive, heterogeneous data streams in real [...] Read more.
In the Internet of Things (IoT) era, the surge in Machine-Type Devices (MTDs) has introduced Massive IoT (MIoT), opening new horizons in the world of connected devices. However, such proliferation presents challenges, especially in storing and analyzing massive, heterogeneous data streams in real time. In order to manage Massive IoT data streams, we utilize analytical database software such as Apache Druid version 28.0.0 that excels in real-time data processing. Our approach relies on a publish/subscribe mechanism, where device-generated data are relayed to a dedicated broker, effectively functioning as a separate server. This broker enables any application to subscribe to the dataset, promoting a dynamic and responsive data ecosystem. At the core of our data transmission infrastructure lies Apache Kafka version 3.6.1, renowned for its exceptional data flow management performance. Kafka efficiently bridges the gap between MIoT sensors and brokers, enabling parallel clusters of brokers that lead to more scalability. In our pursuit of uninterrupted connectivity, we incorporate a fail-safe mechanism with two Software-Defined Radios (SDR) called Nutaq PicoLTE Release 1.5 within our model. This strategic redundancy enhances data transmission availability, safeguarding against connectivity disruptions. Furthermore, to enhance the data repository security, we utilize blockchain technology, specifically Hyperledger Fabric, known for its high-performance attributes, ensuring data integrity, immutability, and security. Our latency results demonstrate that our platform effectively reduces latency for 100,000 devices, qualifying as an MIoT, to less than 25 milliseconds. Furthermore, our findings on blockchain performance underscore our model as a secure platform, achieving over 800 Transactions Per Second in a dataset comprising 14,000 transactions, thereby demonstrating its high efficiency. Full article
Show Figures

Figure 1

31 pages, 2027 KiB  
Review
Security and Privacy Issues in Medical Internet of Things: Overview, Countermeasures, Challenges and Future Directions
by Mohamed Elhoseny, Navod Neranjan Thilakarathne, Mohammed I. Alghamdi, Rakesh Kumar Mahendran, Akber Abid Gardezi, Hesiri Weerasinghe and Anuradhi Welhenge
Sustainability 2021, 13(21), 11645; https://doi.org/10.3390/su132111645 - 21 Oct 2021
Cited by 94 | Viewed by 11140
Abstract
The rapid development and the expansion of Internet of Things (IoT)-powered technologies have strengthened the way we live and the quality of our lives in many ways by combining Internet and communication technologies through its ubiquitous nature. As a novel technological paradigm, this [...] Read more.
The rapid development and the expansion of Internet of Things (IoT)-powered technologies have strengthened the way we live and the quality of our lives in many ways by combining Internet and communication technologies through its ubiquitous nature. As a novel technological paradigm, this IoT is being served in many application domains including healthcare, surveillance, manufacturing, industrial automation, smart homes, the military, etc. Medical Internet of Things (MIoT), or the use of IoT in healthcare, is becoming a booming trend towards improving the health and wellbeing of billions of people by offering smooth and seamless medical facilities and by enhancing the services provided by medical practitioners, nurses, pharmaceutical companies, and other related government and non-government organizations. In recent times, this MIoT has gained higher attention for its potential to alleviate the massive burden on global healthcare, which has been caused by the rise of chronic diseases, the aging population, and emergency situations such as the recent COVID-19 global pandemic, where many government and non-government medical resources were challenged, owing to the rising demand for medical resources. It is evident that with this recent growing demand for MIoT, the associated technologies and its interconnected, heterogeneous nature adds new concerns as it becomes accessible to confidential patient data, often without patient or the medical staff consciousness, as the security and privacy of MIoT devices and technologies are often overlooked and undermined by relevant stakeholders. Hence, the growing security breaches that target the MIoT in healthcare are making the security and privacy of Medical IoT a crucial topic that is worth scrutinizing. In this study, we examined the current state of security and privacy of the MIoT, which has become of utmost concern among many security experts and researchers due to its rapid demand in recent times. Nevertheless, pertaining to the current state of security and privacy, we also examine and discuss a number of attack use cases, countermeasures and solutions, recent challenges, and anticipated future directions where further attention is required through this study. Full article
Show Figures

Figure 1

17 pages, 3941 KiB  
Article
Effects of Transport Network Slicing on 5G Applications
by Yi-Bing Lin, Chien-Chao Tseng and Ming-Hung Wang
Future Internet 2021, 13(3), 69; https://doi.org/10.3390/fi13030069 - 11 Mar 2021
Cited by 22 | Viewed by 5163
Abstract
Network slicing is considered a key technology in enabling the underlying 5G mobile network infrastructure to meet diverse service requirements. In this article, we demonstrate how transport network slicing accommodates the various network service requirements of Massive IoT (MIoT), Critical IoT (CIoT), and [...] Read more.
Network slicing is considered a key technology in enabling the underlying 5G mobile network infrastructure to meet diverse service requirements. In this article, we demonstrate how transport network slicing accommodates the various network service requirements of Massive IoT (MIoT), Critical IoT (CIoT), and Mobile Broadband (MBB) applications. Given that most of the research conducted previously to measure 5G network slicing is done through simulations, we utilized SimTalk, an IoT application traffic emulator, to emulate large amounts of realistic traffic patterns in order to study the effects of transport network slicing on IoT and MBB applications. Furthermore, we developed several MIoT, CIoT, and MBB applications that operate sustainably on several campuses and directed both real and emulated traffic into a Programming Protocol-Independent Packet Processors (P4)-based 5G testbed. We then examined the performance in terms of throughput, packet loss, and latency. Our study indicates that applications with different traffic characteristics need different corresponding Committed Information Rate (CIR) ratios. The CIR ratio is the CIR setting for a P4 meter in physical switch hardware over the aggregated data rate of applications of the same type. A low CIR ratio adversely affects the application’s performance because P4 switches will dispatch application packets to the low-priority queue if the packet arrival rate exceeds the CIR setting for the same type of applications. In our testbed, both exemplar MBB applications required a CIR ratio of 140% to achieve, respectively, a near 100% throughput percentage with a 0.0035% loss rate and an approximate 100% throughput percentage with a 0.0017% loss rate. However, the exemplar CIoT and MIoT applications required a CIR ratio of 120% and 100%, respectively, to reach a 100% throughput percentage without any packet loss. With the proper CIR settings for the P4 meters, the proposed transport network slicing mechanism can enforce the committed rates and fulfill the latency and reliability requirements for 5G MIoT, CIoT, and MBB applications in both TCP and UDP. Full article
(This article belongs to the Special Issue Intelligent 5G Network Slicing)
Show Figures

Figure 1

17 pages, 3131 KiB  
Article
mIoT Slice for 5G Systems: Design and Performance Evaluation
by Riccardo Trivisonno, Massimo Condoluci, Xueli An and Toktam Mahmoodi
Sensors 2018, 18(2), 635; https://doi.org/10.3390/s18020635 - 21 Feb 2018
Cited by 22 | Viewed by 5988
Abstract
Network slicing is a key feature of the upcoming 5G networks allowing the design and deployment of customized communication systems to integrate services provided by vertical industries. In this context, massive Internet of Things (mIoT) is regarded as a compelling use case, both [...] Read more.
Network slicing is a key feature of the upcoming 5G networks allowing the design and deployment of customized communication systems to integrate services provided by vertical industries. In this context, massive Internet of Things (mIoT) is regarded as a compelling use case, both for its relevance from business perspective, and for the technical challenges it poses to network design. With their envisaged massive deployment of devices requiring sporadic connectivity and small data transmission, yet Quality of Service (QoS) constrained, mIoT services will need an ad-hoc end-to-end (E2E) slice, i.e., both access and core network with enhanced Control and User planes (CP/UP). After revising the key requirements of mIoT and identifying major shortcomings of previous generation networks, this paper presents and evaluates an E2E mIoT network slicing solution, featuring a new connectivity model overcoming the load limitations of legacy systems. Unique in its kind, this paper addresses mIoT requirements from an end-to-end perspective highlighting and solving, unlike most prior related work, the connectivity challenges posed to the core network. Results demonstrate that the proposed solution, reducing CP signaling and optimizing UP resource utilization, is a suitable candidate for next generation network standards to efficiently handle massive device deployment. Full article
(This article belongs to the Special Issue Green Wireless Networks in 5G-inspired Applications)
Show Figures

Figure 1

Back to TopTop