Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Mactra chinensis philippi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 6749 KiB  
Brief Report
Toxicity of Nitrite to Juvenile Sunray Surf Clam (Mactra chinensis Philippi)
by Yuanyuan Dai, Yubo Dong, Huimin Wu, Zilong Chen, Feng Yang, Jia Jia and Zhongzhi Chen
Pollutants 2024, 4(4), 452-462; https://doi.org/10.3390/pollutants4040030 - 7 Oct 2024
Viewed by 1649
Abstract
Nitrite is a common pollutant in marine environments and can cause mortality in crustaceans and bivalves. The purpose of the current study is to understand nitrate’s toxicity to juvenile clams due to its potential impact on aquaculture and marine ecosystems. Juvenile sunray surf [...] Read more.
Nitrite is a common pollutant in marine environments and can cause mortality in crustaceans and bivalves. The purpose of the current study is to understand nitrate’s toxicity to juvenile clams due to its potential impact on aquaculture and marine ecosystems. Juvenile sunray surf clams (Mactra chinensis Philippi) (1.00 ± 0.10 cm shell length, 0.75 ± 0.04 cm shell height) were exposed to varying concentrations of nitrite for 96 h and 20 days, respectively. The LC50 for survival at 96 h was 37 mg/L NO2-N. Histological evaluations were made on juvenile clams exposed at 30 mg/L after 20 d of exposure. Epithelial cells and digestive diverticulum are the best sub-lethal effect indicators. Shell length and antioxidant enzyme activities were measured at the beginning of the experiment and then observed 10 and 20 days after exposure. A logarithmic relationship was obtained between the relative growth rate (based on the shell length) of juvenile M. chinensis and the nitrite concentration. Compared to the control, activity suppression of superoxide dismutase and catalase activity was detected from the concentration of 1 mg/L NO2-N. It is recommended that nitrite concentrations remain below 1 mg/L to prevent stress during the early developmental stages of clams. Full article
(This article belongs to the Section Impact Assessment of Environmental Pollution)
Show Figures

Figure 1

11 pages, 1803 KiB  
Brief Report
Effects of Ammonia on Juvenile Sunray Surf Clam (Mactra chinensis Philippi) in Laboratory Tests
by Yuanyuan Dai, Yubo Dong, Feng Yang, Zhongzhi Chen and Jia Jia
Pollutants 2023, 3(2), 232-242; https://doi.org/10.3390/pollutants3020017 - 14 Apr 2023
Cited by 3 | Viewed by 2198
Abstract
The current study aimed to determine the acute and sub-chronic toxicity of ammonia to juvenile surf clams (Mactra chinensis Philippi). Acute toxicity tests were conducted with seven concentrations of ammonium chloride using a 96 h static-renewal approach. Sub-chronic ammonia exposure tests (20 [...] Read more.
The current study aimed to determine the acute and sub-chronic toxicity of ammonia to juvenile surf clams (Mactra chinensis Philippi). Acute toxicity tests were conducted with seven concentrations of ammonium chloride using a 96 h static-renewal approach. Sub-chronic ammonia exposure tests (20 d exposures) were conducted with 6 concentrations at 20 °C. The 96 h median lethal concentration (96 h LC50) was 11.1 (10.0; 12.0) mg/L total ammonia nitrogen (TAN) and 0.56 (0.50; 0.60) mg/L unionized ammonia (NH3). The relative growth rate was significantly reduced at concentrations higher than 1.6 mg/L TAN (0.075 mg/L NH3) in the 20 d tests. The estimated maximum acceptable toxicant concentration (MATC) based on the reduced growth of juvenile M. chinensis was between 0.8 and1.6 mg/L TAN (0.038–0.075 mg/L NH3). Histopathological changes were evaluated in the surviving clams after 20 days of exposure. Exposure to 14.1 mg/L TAN (0.661 mg/L NH3) resulted in changes in the mantle, foot and digestive diverticulum. We also examined the antioxidant enzyme activities of superoxide dismutase (SOD) and catalase (CAT) in 10 d and 20 d at 6 different levels (plus a control) of ammonia from 0.8 mg/L to 14.1 mg/L TAN. Ammonia exposure at 0.8 mg/L TAN (0.038 mg/L NH3) significantly affected SOD and CAT activities. The level of enzymic activity decreased with the increasing concentration of TAN. The results improved our understanding of oxidative damage under ammonia exposure and provided data for the aquaculture of sunray surf clams. Full article
(This article belongs to the Special Issue Marine Pollutants - Volume 2)
Show Figures

Figure 1

Back to TopTop