Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Macrobrachium nipponensis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3530 KiB  
Article
Effects of Salinity Stress on Histological Changes, Glucose Metabolism Index and Transcriptomic Profile in Freshwater Shrimp, Macrobrachium nipponense
by Yiming Li, Yucong Ye, Wen Li, Xingguo Liu, Yunlong Zhao, Qichen Jiang and Xuan Che
Animals 2023, 13(18), 2884; https://doi.org/10.3390/ani13182884 - 11 Sep 2023
Cited by 10 | Viewed by 3076
Abstract
Salinity is an important factor in the aquatic environment and affects the ion homeostasis and physiological activities of crustaceans. Macrobrachium nipponense is a shrimp that mainly lives in fresh and low-salt waters and plays a huge economic role in China’s shrimp market. Currently, [...] Read more.
Salinity is an important factor in the aquatic environment and affects the ion homeostasis and physiological activities of crustaceans. Macrobrachium nipponense is a shrimp that mainly lives in fresh and low-salt waters and plays a huge economic role in China’s shrimp market. Currently, there are only a few studies on the effects of salinity on M. nipponense. Therefore, it is of particular importance to study the molecular responses of M. nipponense to salinity fluctuations. In this study, M. nipponense was set at salinities of 0, 8, 14 and 22‰ for 6 weeks. The gills from the control (0‰) and isotonic groups (14‰) were used for RNA extraction and transcriptome analysis. In total, 593 differentially expressed genes (DEGs) were identified, of which 282 were up-regulated and 311 were down-regulated. The most abundant gill transcripts responding to different salinity levels based on GO classification were organelle membrane (cellular component), creatine transmembrane transporter activity (molecular function) and creatine transmembrane transport (biological function). KEGG analysis showed that the most enriched and significantly affected pathways included AMPK signaling, lysosome and cytochrome P450. In addition, 15 DEGs were selected for qRT-PCR verification, which were mainly related to ion homeostasis, glucose metabolism and lipid metabolism. The results showed that the expression patterns of these genes were similar to the high-throughput data. Compared with the control group, high salinity caused obvious injury to gill tissue, mainly manifested as contraction and relaxation of gill filament, cavity vacuolation and severe epithelial disintegration. Glucose-metabolism-related enzyme activities (e.g., pyruvate kinase, hexokinase, 6-phosphate fructose kinase) and related-gene expression (e.g., hexokinase, pyruvate kinase, 6-phosphate fructose kinase) in the gills were significantly higher at a salinity of 14‰. This study showed that salinity stress activated ion transport channels and promoted an up-regulated level of glucose metabolism. High salinity levels caused damage to the gill tissue of M. nipponense. Overall, these results improved our understanding of the salt tolerance mechanism of M. nipponense. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

15 pages, 2269 KiB  
Article
Oxidative Stress of Cadmium and Lead at Environmentally Relevant Concentrations on Hepatopancreas of Macrobrachium nipponensis and Their Mixture Interactivity: Implications for Water Quality Criteria Amendment
by Xiang Liu, Qianzhen Deng, Hao Yang, Jingyao Wang and Min Wang
Int. J. Environ. Res. Public Health 2023, 20(1), 360; https://doi.org/10.3390/ijerph20010360 - 26 Dec 2022
Cited by 11 | Viewed by 1852
Abstract
The biotoxicity of heavy metals in water has always been the focus of ecological health research. In this study, the oxidative stress-associated toxicity of cadmium (Cd) and lead (Pb) at environmentally relevant concentrations on the hepatopancreas of Macrobrachium nipponensis was investigated based on [...] Read more.
The biotoxicity of heavy metals in water has always been the focus of ecological health research. In this study, the oxidative stress-associated toxicity of cadmium (Cd) and lead (Pb) at environmentally relevant concentrations on the hepatopancreas of Macrobrachium nipponensis was investigated based on multiple biomarker responses in a 28-day indoor exposure study. Changes in integrated biomarker responses (IBR) and their interactivity were subsequently analyzed. No dead individuals were found across any of the tested conditions. The chronic toxicity of heavy metals depended on their type and exposure time at the same concentration. At low concentrations, organisms have a regulatory capacity to cope with the excess reactive oxygen species (ROS) induced by Pb stress over time. In detail, the activity of superoxide dismutase (SOD) was inhibited by Pb stress at a high concentration as time passed. The sensitivity of metallothionein (MT) to Cd was stronger than Pb, and the potential for Cd to cause lipid peroxidation damage was higher than Pb. At the same time, Pb had a greater disturbance effect on the nervous system than Cd, especially in the early exposure stage. The contribution of Cd and Pb to the interaction effect varied dynamically with time and concentration of exposure, but mostly showed antagonism. The results of this study have important significance for guiding the diagnosis of ecological water health, the amendment of water quality criteria, and the management of wastewater discharge. Full article
(This article belongs to the Special Issue Ecological Risk Assessment of Water Body Pollution)
Show Figures

Figure 1

Back to TopTop