Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = MT3620 MCU

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4828 KB  
Article
Genome-Wide Identification and Expression Profiling Analysis of the Mitochondrial Calcium Uniporter Gene Family Under Abiotic Stresses in Medicago sativa
by Wanhong Li, Bowei Jia, Jiaxun Sheng, Yang Shen, Jun Jin, Xiaoli Sun, Xiangping Liu and Mingzhe Sun
Plants 2024, 13(22), 3176; https://doi.org/10.3390/plants13223176 - 12 Nov 2024
Cited by 2 | Viewed by 1580
Abstract
The mitochondrial calcium uniporters (MCUs) are a family of calcium unidirectional transporters important for cytoplasmic Ca2+ signals. Though the MCU proteins in several plant species have been investigated, genome-wide analysis of MCUs in alfalfa is lacking. Here, via genome-wide analysis, a total [...] Read more.
The mitochondrial calcium uniporters (MCUs) are a family of calcium unidirectional transporters important for cytoplasmic Ca2+ signals. Though the MCU proteins in several plant species have been investigated, genome-wide analysis of MCUs in alfalfa is lacking. Here, via genome-wide analysis, a total of 5, 20, and 6 MCU genes were identified in three different alfalfa cultivars, namely Medicago truncatula Jemalong A17, Medicago sativa XinJiangDaYe, and M. sativa Zhongmu No. 1, respectively. They were further phylogenetically classified into three subfamilies. Most MCU genes have only one intron, and gene duplication events of MCU genes were observed within each alfalfa accession and between different accessions. All alfalfa MCU proteins contained a highly conserved MCU domain and 10 conserved motifs, featuring two transmembrane domains and a DI/VME motif. According to the tissue expression data of M. sativa Zhongmu No. 1, MsMCU6.2 was the most abundant transcript with the highest expression in the leaf, and MsMCU5 and MsMCU1.2 showed higher expression levels in the stem than other tissues. We analyzed the expression profiles of five MCU genes (MsMCU1.1/1.2/5/6.1/6.2) under salt, drought, and cold stresses via qRT-PCR assays. All five MCU genes were induced by drought stress, except MsMCU5, whose expression was up-regulated by salt stress, while cold stress slightly altered MsMCU expression. Nine potential interacting proteins and three miRNAs targeting MtMCUs were predicted. These results provide detailed knowledge of alfalfa MCU genes and suggest their potential functions in abiotic stress response. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

17 pages, 1532 KB  
Review
The Mitochondrial Calcium Uniporter (MCU): Molecular Identity and Role in Human Diseases
by Donato D’Angelo and Rosario Rizzuto
Biomolecules 2023, 13(9), 1304; https://doi.org/10.3390/biom13091304 - 25 Aug 2023
Cited by 30 | Viewed by 8200
Abstract
Calcium (Ca2+) ions act as a second messenger, regulating several cell functions. Mitochondria are critical organelles for the regulation of intracellular Ca2+. Mitochondrial calcium (mtCa2+) uptake is ensured by the presence in the inner mitochondrial membrane (IMM) [...] Read more.
Calcium (Ca2+) ions act as a second messenger, regulating several cell functions. Mitochondria are critical organelles for the regulation of intracellular Ca2+. Mitochondrial calcium (mtCa2+) uptake is ensured by the presence in the inner mitochondrial membrane (IMM) of the mitochondrial calcium uniporter (MCU) complex, a macromolecular structure composed of pore-forming and regulatory subunits. MtCa2+ uptake plays a crucial role in the regulation of oxidative metabolism and cell death. A lot of evidence demonstrates that the dysregulation of mtCa2+ homeostasis can have serious pathological outcomes. In this review, we briefly discuss the molecular structure and the function of the MCU complex and then we focus our attention on human diseases in which a dysfunction in mtCa2+ has been shown. Full article
(This article belongs to the Special Issue Advances in Mitochondrial Transport Research)
Show Figures

Figure 1

23 pages, 4666 KB  
Article
A Smart and Secure Logistics System Based on IoT and Cloud Technologies
by Ilaria Sergi, Teodoro Montanaro, Fabrizio Luca Benvenuto and Luigi Patrono
Sensors 2021, 21(6), 2231; https://doi.org/10.3390/s21062231 - 23 Mar 2021
Cited by 43 | Viewed by 9877
Abstract
Recently, one of the hottest topics in the logistics sector has been the traceability of goods and the monitoring of their condition during transportation. Perishable goods, such as fresh goods, have specifically attracted attention of the researchers that have already proposed different solutions [...] Read more.
Recently, one of the hottest topics in the logistics sector has been the traceability of goods and the monitoring of their condition during transportation. Perishable goods, such as fresh goods, have specifically attracted attention of the researchers that have already proposed different solutions to guarantee quality and freshness of food through the whole cold chain. In this regard, the use of Internet of Things (IoT)-enabling technologies and its specific branch called edge computing is bringing different enhancements thereby achieving easy remote and real-time monitoring of transported goods. Due to the fast changes of the requirements and the difficulties that researchers can encounter in proposing new solutions, the fast prototype approach could contribute to rapidly enhance both the research and the commercial sector. In order to make easy the fast prototyping of solutions, different platforms and tools have been proposed in the last years, however it is difficult to guarantee end-to-end security at all the levels through such platforms. For this reason, based on the experiments reported in literature and aiming at providing support for fast-prototyping, end-to-end security in the logistics sector, the current work presents a solution that demonstrates how the advantages offered by the Azure Sphere platform, a dedicated hardware (i.e., microcontroller unit, the MT3620) device and Azure Sphere Security Service can be used to realize a fast prototype to trace fresh food conditions through its transportation. The proposed solution guarantees end-to-end security and can be exploited by future similar works also in other sectors. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

26 pages, 1295 KB  
Review
Mitochondrial Calcium Uniporter Structure and Function in Different Types of Muscle Tissues in Health and Disease
by Nadezhda V. Tarasova, Polina A. Vishnyakova, Yulia A. Logashina and Andrey V. Elchaninov
Int. J. Mol. Sci. 2019, 20(19), 4823; https://doi.org/10.3390/ijms20194823 - 28 Sep 2019
Cited by 19 | Viewed by 6062
Abstract
Calcium ions (Ca2+) influx to mitochondrial matrix is crucial for the life of a cell. Mitochondrial calcium uniporter (mtCU) is a protein complex which consists of the pore-forming subunit (MCU) and several regulatory subunits. MtCU is the main contributor to inward [...] Read more.
Calcium ions (Ca2+) influx to mitochondrial matrix is crucial for the life of a cell. Mitochondrial calcium uniporter (mtCU) is a protein complex which consists of the pore-forming subunit (MCU) and several regulatory subunits. MtCU is the main contributor to inward Ca2+ currents through the inner mitochondrial membrane. Extensive investigations of mtCU involvement into normal and pathological molecular pathways started from the moment of discovery of its molecular components. A crucial role of mtCU in the control of these pathways is now recognized in both health and disease. In particular, impairments of mtCU function have been demonstrated for cardiovascular and skeletal muscle-associated pathologies. This review summarizes the current state of knowledge on mtCU structure, regulation, and function in different types of muscle tissues in health and disease. Full article
(This article belongs to the Special Issue Calcium Signaling in Human Health and Diseases 2.0)
Show Figures

Graphical abstract

Back to TopTop