Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = MSNA variability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 632 KB  
Review
Autonomic Nervous System, Cognition, and Emotional Valence During Different Phases of the Menstrual Cycle—A Narrative Review
by Sankanika Roy, Elettra Agordati and Thomas D. W. Wilcockson
NeuroSci 2025, 6(3), 78; https://doi.org/10.3390/neurosci6030078 - 13 Aug 2025
Viewed by 1627
Abstract
The menstrual cycle affects the autonomic nervous system (ANS), cognition, and emotional valence in all biological women. There exists a complex relationship between hormonal fluctuations, ANS, cognition, and emotional valence during the different phases of the menstrual cycle, which includes menstruation, the follicular [...] Read more.
The menstrual cycle affects the autonomic nervous system (ANS), cognition, and emotional valence in all biological women. There exists a complex relationship between hormonal fluctuations, ANS, cognition, and emotional valence during the different phases of the menstrual cycle, which includes menstruation, the follicular phase, ovulation, and the luteal phase. Hence, this narrative review is an attempt to comprehensively understand the effects of the menstrual cycle on the structural and functional integrity of the ANS. In order to provide a comprehensive understanding of the complex relationship between the menstrual cycle, hormonal fluctuations, and ANS function in biological women, this review examines key parameters, including heart rate variability (HRV), baroreflex sensitivity (BRS), muscle sympathetic nerve activity (MSNA), and pupillary light reflex (PLR), to investigate how these physiological systems are dynamically influenced by the cyclical changes in hormone levels and how these fluctuations impact various physiological and psychological outcomes, such as mood, cognition, and emotional regulation. There have been several studies previously performed to assess these parameters during different phases of the menstrual cycle. However, the results have been contradictory; therefore, this review explores possible reasons behind these inconsistent results, with likely reasons including irregularity in the menstrual cycles and differences in hormonal fluctuations between different women during similar phases of the menstrual cycle. Overall, there appears to be evidence to suggest that the menstrual cycle has both direct and indirect effects on ANS, cognition, and emotional valence, whilst measures of ANS may provide a means for assessing the effect of the menstrual cycle. Full article
Show Figures

Figure 1

13 pages, 802 KB  
Article
Cardiac and Vascular Sympathetic Baroreflex Control during Orthostatic Pre-Syncope
by Raffaello Furlan, Karsten Heusser, Maura Minonzio, Dana Shiffer, Beatrice Cairo, Jens Tank, Jens Jordan, André Diedrich, Peter Gauger, Antonio Roberto Zamuner, Franca Dipaola, Alberto Porta and Franca Barbic
J. Clin. Med. 2019, 8(9), 1434; https://doi.org/10.3390/jcm8091434 - 10 Sep 2019
Cited by 32 | Viewed by 4178
Abstract
We hypothesized that sympathetic baroreflex mediated uncoupling between neural sympathetic discharge pattern and arterial pressure (AP) fluctuations at 0.1 Hz during baroreceptor unloading might promote orthostatic pre-syncope. Ten volunteers (32 ± 6 years) underwent electrocardiogram, beat-to-beat AP, respiratory activity and muscle sympathetic nerve [...] Read more.
We hypothesized that sympathetic baroreflex mediated uncoupling between neural sympathetic discharge pattern and arterial pressure (AP) fluctuations at 0.1 Hz during baroreceptor unloading might promote orthostatic pre-syncope. Ten volunteers (32 ± 6 years) underwent electrocardiogram, beat-to-beat AP, respiratory activity and muscle sympathetic nerve activity (MSNA) recordings while supine (REST) and during 80° head-up tilt (HUT) followed by −10 mmHg stepwise increase of lower body negative pressure until pre-syncope. Cardiac and sympathetic baroreflex sensitivity were quantified. Spectrum analysis of systolic and diastolic AP (SAP and DAP) and calibrated MSNA (cMSNA) variability assessed the low frequency fluctuations (LF, ~0.1 Hz) of SAP, DAP and cMSNA variability. The squared coherence function (K2) quantified the coupling between cMSNA and DAP in the LF band. Analyses were performed while supine, during asymptomatic HUT (T1) and at pre-syncope onset (T2). During T2 we found that: (1) sympathetic baroreceptor modulation was virtually abolished compared to T1; (2) a progressive decrease in AP was accompanied by a persistent but chaotic sympathetic firing; (3) coupling between cMSNA and AP series at 0.1 Hz was reduced compared to T1. A negligible sympathetic baroreceptor modulation during pre-syncope might disrupt sympathetic discharge pattern impairing the capability of vessels to constrict and promote pre-syncope. Full article
(This article belongs to the Special Issue Autonomic Nervous System: From Bench to Bedside)
Show Figures

Figure 1

Back to TopTop