Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = MHD tangent hyperbolic fluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4058 KiB  
Article
MHD Thermal and Solutal Stratified Stagnation Flow of Tangent Hyperbolic Fluid Induced by Stretching Cylinder with Dual Convection
by Sushila Choudhary, Prasun Choudhary, Nazek Alessa and Karuppusamy Loganathan
Mathematics 2023, 11(9), 2182; https://doi.org/10.3390/math11092182 - 5 May 2023
Cited by 18 | Viewed by 2376
Abstract
The magneto-hydrodynamic dual convection stagnation flow pattern behavior of a Tangent Hyperbolic (TH) fluid has been reported in this study. The radiation, Joule heating, and heat generation/absorption impacts have also been analyzed. The flow-narrating differential equations, which are constrained by a thermal and [...] Read more.
The magneto-hydrodynamic dual convection stagnation flow pattern behavior of a Tangent Hyperbolic (TH) fluid has been reported in this study. The radiation, Joule heating, and heat generation/absorption impacts have also been analyzed. The flow-narrating differential equations, which are constrained by a thermal and solutal stratified porous medium, are transmuted into a system of nonlinear differential equations. To provide a numerical solution to the flow problem, a computational model is created. Numerical solutions are obtained using the fifth-order exactness program (Bvp5c), and for validation of the results, a comparison is also made with the methodology of the Runge–Kutta fourth order. The physical implications are appraised and depicted using diagrams or tables against flow-controlling parameters, such as Hartmann number, porosity parameter, solutal stratification, the parameter of curvature, temperature stratification, local Weissenberg number, Schmidt number, etc. It has been observed that in the appearance of Joule heating phenomena, the fluid temperature is a lowering function of thermal stratification. The findings are compared to the existing literature and found to be consistent with earlier research. Full article
Show Figures

Figure 1

Back to TopTop