Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = MERIS Coastcolour

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5490 KiB  
Article
Evaluation of Sentinel-3A OLCI Products Derived Using the Case-2 Regional CoastColour Processor over the Baltic Sea
by Dmytro Kyryliuk and Susanne Kratzer
Sensors 2019, 19(16), 3609; https://doi.org/10.3390/s19163609 - 19 Aug 2019
Cited by 77 | Viewed by 8005
Abstract
In this study, the Level-2 products of the Ocean and Land Colour Instrument (OLCI) data on Sentinel-3A are derived using the Case-2 Regional CoastColour (C2RCC) processor for the SentiNel Application Platform (SNAP) whilst adjusting the specific scatter of Total Suspended Matter (TSM) for [...] Read more.
In this study, the Level-2 products of the Ocean and Land Colour Instrument (OLCI) data on Sentinel-3A are derived using the Case-2 Regional CoastColour (C2RCC) processor for the SentiNel Application Platform (SNAP) whilst adjusting the specific scatter of Total Suspended Matter (TSM) for the Baltic Sea in order to improve TSM retrieval. The remote sensing product “kd_z90max” (i.e., the depth of the water column from which 90% of the water-leaving irradiance are derived) from C2RCC-SNAP showed a good correlation with in situ Secchi depth (SD). Additionally, a regional in-water algorithm was applied to derive SD from the attenuation coefficient Kd(489) using a local algorithm. Furthermore, a regional in-water relationship between particle scatter and bench turbidity was applied to generate turbidity from the remote sensing product “iop_bpart” (i.e., the scattering coefficient of marine particles at 443 nm). The spectral shape of the remote sensing reflectance (Rrs) data extracted from match-up stations was evaluated against reflectance data measured in situ by a tethered Attenuation Coefficient Sensor (TACCS) radiometer. The L2 products were evaluated against in situ data from several dedicated validation campaigns (2016–2018) in the NW Baltic proper. All derived L2 in-water products were statistically compared to in situ data and the results were also compared to results for MERIS validation from the literature and the current S3 Level-2 Water (L2W) standard processor from EUMETSAT. The Chl-a product showed a substantial improvement (MNB 21%, RMSE 88%, APD 96%, n = 27) compared to concentrations derived from the Medium Resolution Imaging Spectrometer (MERIS), with a strong underestimation of higher values. TSM performed within an error comparable to MERIS data with a mean normalized bias (MNB) 25%, root-mean square error (RMSE) 73%, average absolute percentage difference (APD) 63% n = 23). Coloured Dissolved Organic Matter (CDOM) absorption retrieval has also improved substantially when using the product “iop_adg” (i.e., the sum of organic detritus and Gelbstoff absorption at 443 nm) as a proxy (MNB 8%, RMSE 56%, APD 54%, n = 18). The local SD (MNB 6%, RMSE 62%, APD 60%, n = 35) and turbidity (MNB 3%, RMSE 35%, APD 34%, n = 29) algorithms showed very good agreement with in situ data. We recommend the use of the SNAP C2RCC with regionally adjusted TSM-specific scatter for water product retrieval as well as the regional turbidity algorithm for Baltic Sea monitoring. Besides documenting the evaluation of the C2RCC processor, this paper may also act as a handbook on the validation of Ocean Colour data. Full article
(This article belongs to the Special Issue Remote Sensing of Ocean Colour: Theory and Applications)
Show Figures

Figure 1

20 pages, 11492 KiB  
Article
Estimation of Water Quality Parameters in Lake Erie from MERIS Using Linear Mixed Effect Models
by Kiana Zolfaghari and Claude R. Duguay
Remote Sens. 2016, 8(6), 473; https://doi.org/10.3390/rs8060473 - 3 Jun 2016
Cited by 23 | Viewed by 8216
Abstract
Linear Mixed Effect (LME) models are applied to the CoastColour atmospherically-corrected Medium Resolution Imaging Spectrometer (MERIS) reflectance, L2R full resolution product, to derive chlorophyll-a (chl-a) concentration and Secchi disk depth (SDD) in Lake Erie, which is considered as a Case II water ( [...] Read more.
Linear Mixed Effect (LME) models are applied to the CoastColour atmospherically-corrected Medium Resolution Imaging Spectrometer (MERIS) reflectance, L2R full resolution product, to derive chlorophyll-a (chl-a) concentration and Secchi disk depth (SDD) in Lake Erie, which is considered as a Case II water (i.e., turbid and productive). A LME model considers the correlation that exists in the field measurements which have been performed repeatedly in space and time. In this study, models are developed based on the relation between the logarithmic scale of the water quality parameters and band ratios: B07:665 nm to B09:708.75 nm for log10chl-a and B06:620 nm to B04:510 nm for log10SDD. Cross validation is performed on the models. The results show good performance of the models, with Root Mean Square Errors (RMSE) and Mean Bias Errors (MBE) of 0.31 and 0.018 for log10chl-a, and 0.19 and 0.006 for log10SDD, respectively. The models are then applied to a time series of MERIS images acquired over Lake Erie from 2004–2012 to investigate the spatial and temporal variations of the water quality parameters. Produced maps reveal distinct monthly patterns for different regions of Lake Erie that are in agreement with known biogeochemical properties of the lake. The Detroit River and Maumee River carry sediments and nutrients to the shallow western basin. Hence, the shallow western basin of Lake Erie experiences the most intense algal blooms and the highest turbidity compared to the other sections of the lake. Maumee Bay, Sandusky Bay, Rondeau Bay and Long Point Bay are estimated to have prolonged intense algal bloom. Full article
(This article belongs to the Special Issue Water Optics and Water Colour Remote Sensing)
Show Figures

Graphical abstract

23 pages, 2781 KiB  
Article
Mapping Spatial Patterns of Posidonia oceanica Meadows by Means of Daedalus ATM Airborne Sensor in the Coastal Area of Civitavecchia (Central Tyrrhenian Sea, Italy)
by Flavio Borfecchia, Carla Micheli, Filippo Carli, Selvaggia Cognetti De Martis, Valentina Gnisci, Viviana Piermattei, Alessandro Belmonte, Luigi De Cecco, Sandro Martini and Marco Marcelli
Remote Sens. 2013, 5(10), 4877-4899; https://doi.org/10.3390/rs5104877 - 8 Oct 2013
Cited by 19 | Viewed by 9099
Abstract
The spatial distribution of sea bed covers and seagrass in coastal waters is of key importance in monitoring and managing Mediterranean shallow water environments often subject to both increasing anthropogenic impacts and climate change effects. In this context we present a methodology for [...] Read more.
The spatial distribution of sea bed covers and seagrass in coastal waters is of key importance in monitoring and managing Mediterranean shallow water environments often subject to both increasing anthropogenic impacts and climate change effects. In this context we present a methodology for effective monitoring and mapping of Posidonia oceanica (PO) meadows in turbid waters using remote sensing techniques tested by means of LAI (Leaf Area Index) point sea truth measurements. Preliminary results using Daedalus airborne sensor are reported referring to the PO meadows at Civitavecchia site (central Tyrrhenian sea) where vessel traffic due to presence of important harbors and huge power plant represent strong impact factors. This coastal area, 100 km far from Rome (Central Italy), is characterized also by significant hydrodynamic variations and other anthropogenic factors that affect the health of seagrass meadows with frequent turbidity and suspended sediments in the water column. During 2011–2012 years point measurements of several parameters related to PO meadows phenology were acquired on various stations distributed along 20 km of coast between the Civitavecchia and S. Marinella sites. The Daedalus airborne sensor multispectral data were preprocessed with the support of satellite (MERIS) derived water quality parameters to obtain here improved thematic maps of the local PO distribution. Their thematic accuracy was then evaluated as agreement (R2) with the point sea truth measurements and regressive modeling using an on purpose developd method. Full article
Show Figures

Back to TopTop