Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = MACE telescope

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 644 KB  
Review
Very-High-Energy Gamma-Ray Observations as a Probe to the Nature of Dark Matter and Prospects for MACE
by Mani Khurana, Krishna Kumar Singh, Atul Pathania, Pawan Kumar Netrakanti and Kuldeep Kumar Yadav
Galaxies 2025, 13(3), 53; https://doi.org/10.3390/galaxies13030053 - 2 May 2025
Viewed by 819
Abstract
Searching for very-high-energy photons arising from dark matter interactions in selected astrophysical environments is a promising strategy to probe the existence and particle nature of dark matter. Among the many particle candidates, motivated by the extensions of the Standard Model, Weakly Interacting Massive [...] Read more.
Searching for very-high-energy photons arising from dark matter interactions in selected astrophysical environments is a promising strategy to probe the existence and particle nature of dark matter. Among the many particle candidates, motivated by the extensions of the Standard Model, Weakly Interacting Massive Particles (WIMPs) are considered the most compelling candidate for the elusive dark matter in the universe. In this contribution, we report an overview of the important developments in the field of indirect searching for dark matter through cosmic gamma-ray observations. We mainly focus on the role of atmospheric Cherenkov telescopes in probing the dark matter. Finally, we emphasize the opportunities for the Major Atmospheric Cherenkov Experiment (MACE) situated in Hanle, India, to explore WIMPs in the mass range of 200 GeV to 10 TeV for Segue1 and Draco dwarf–spheroidal galaxies. Full article
Show Figures

Figure 1

15 pages, 1300 KB  
Article
PyMAP: Python-Based Data Analysis Package with a New Image Cleaning Method to Enhance the Sensitivity of MACE Telescope
by Mani Khurana, Kuldeep Kumar Yadav, Pradeep Chandra, Krishna Kumar Singh, Atul Pathania and Chinmay Borwankar
Galaxies 2025, 13(1), 14; https://doi.org/10.3390/galaxies13010014 - 15 Feb 2025
Cited by 1 | Viewed by 1082
Abstract
Observations of Very High Energy (VHE) gamma ray sources using the ground-based Imaging Atmospheric Cherenkov Telescopes (IACTs) play a pivotal role in understanding the non-thermal energetic phenomena and acceleration processes under extreme astrophysical conditions. However, detection of the VHE gamma ray signal from [...] Read more.
Observations of Very High Energy (VHE) gamma ray sources using the ground-based Imaging Atmospheric Cherenkov Telescopes (IACTs) play a pivotal role in understanding the non-thermal energetic phenomena and acceleration processes under extreme astrophysical conditions. However, detection of the VHE gamma ray signal from the astrophysical sources is very challenging, as these telescopes detect the photons indirectly by measuring the flash of Cherenkov light from the Extensive Air Showers (EAS) initiated by the cosmic gamma rays in the Earth’s atmosphere. This requires fast detection systems, along with advanced data acquisition and analysis techniques to measure the development of extensive air showers and the subsequent segregation of gamma ray events from the huge cosmic ray background, followed by the physics analysis of the signal. Here, we report the development of a python-based package for analyzing the data from the Major Atmospheric Cherenkov Experiment (MACE), which is operational at Hanle in India. The Python-based MACE data Analysis Package (PyMAP) analyzes data by using advanced methods and machine learning algorithms. Data recorded by the MACE telescope are passed through different utilities developed in the PyMAP to extract the gamma ray signal from a given source direction. We also propose a new image cleaning method called DIOS (Denoising Image of Shower) and compare its performance with the standard image cleaning method. The working performance of DIOS indicates an advantage over the standard method with an improvement of ≈25% in the sensitivity of MACE. Full article
Show Figures

Figure 1

18 pages, 5609 KB  
Review
Gamma Ray Pulsars and Opportunities for the MACE Telescope
by Atul Pathania, Krishna Kumar Singh and Kuldeep Kumar Yadav
Galaxies 2023, 11(4), 91; https://doi.org/10.3390/galaxies11040091 - 17 Aug 2023
Viewed by 2311
Abstract
Rapidly rotating neutron stars with very strong surface magnetic fields are observed to emit pulsed emission in the whole range of electromagnetic spectrum from radio to high-energy gamma rays. These so-called pulsars are known for their exceptional rotational stability. The radio emission from [...] Read more.
Rapidly rotating neutron stars with very strong surface magnetic fields are observed to emit pulsed emission in the whole range of electromagnetic spectrum from radio to high-energy gamma rays. These so-called pulsars are known for their exceptional rotational stability. The radio emission from pulsars is generally believed to be powered by the rotational energy of neutron stars. More than 3000 pulsars have been currently known from radio observations; however, only about 10% are observed in the high-energy gamma ray band. The Fermi-LAT observations in the energy range above 100 MeV have discovered more than 300 pulsars. However, the origin of high-energy non-thermal radiation from pulsars is not completely understood and remains an active area of research. In this contribution, we report a summary of observational features of the gamma ray pulsars and briefly discuss observability for the MACE gamma ray telescope, which has just started its regular science operation at Hanle in India. Six gamma ray pulsars, other than the well-known Crab and Geminga, are identified as probable candidates for MACE observations. Full article
(This article belongs to the Special Issue The 10th Anniversary of Galaxies: The Astrophysics of Neutron Stars)
Show Figures

Figure 1

22 pages, 10048 KB  
Review
20 Years of Indian Gamma Ray Astronomy Using Imaging Cherenkov Telescopes and Road Ahead
by Krishna Kumar Singh and Kuldeep Kumar Yadav
Universe 2021, 7(4), 96; https://doi.org/10.3390/universe7040096 - 10 Apr 2021
Cited by 15 | Viewed by 3318
Abstract
The field of ground-based γ-ray astronomy has made very significant advances over the last three decades with the extremely successful operations of several atmospheric Cherenkov telescopes worldwide. The advent of the imaging Cherenkov technique for indirect detection of cosmic γ rays has [...] Read more.
The field of ground-based γ-ray astronomy has made very significant advances over the last three decades with the extremely successful operations of several atmospheric Cherenkov telescopes worldwide. The advent of the imaging Cherenkov technique for indirect detection of cosmic γ rays has immensely contributed to this field with the discovery of more than 220 γ-ray sources in the Universe. This has greatly improved our understanding of the various astrophysical processes involved in the non-thermal emission at energies above 100 GeV. In this paper, we summarize the important results achieved by the Indian γ-ray astronomers from the GeV-TeV observations using imaging Cherenkov telescopes over the last two decades. We mainly emphasize the results obtained from the observations of active galactic nuclei with the TACTIC (TeV Atmospheric Cherenkov Telescope with Imaging Camera) telescope, which has been operational since 1997 at Mount Abu, India. We also discuss the future plans of the Indian γ-ray astronomy program with special focus on the scientific objectives of the recently installed 21 m diameter MACE (Major Atmospheric Cherenkov Experiment) telescope at Hanle, India. Full article
Show Figures

Figure 1

Back to TopTop