Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Lycium barbarum leaf flavonoids extracts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1531 KiB  
Article
Flavonoids from Lycium barbarum Leaves Exhibit Anti-Aging Effects through the Redox-Modulation
by Yinhong Niu, Jiale Liao, Haitao Zhou, Chih-chen Wang, Lei Wang and Yanli Fan
Molecules 2022, 27(15), 4952; https://doi.org/10.3390/molecules27154952 - 3 Aug 2022
Cited by 36 | Viewed by 3407
Abstract
Lycium barbarum leaves are a kind of vegetable, and modern nutrition studies have found that they have an anti-aging function. Our study aims to investigate the anti-aging effects of Lycium barbarum leaf flavonoid (LBLF) extracts and its underlying molecular mechanism. LBLFs were purified [...] Read more.
Lycium barbarum leaves are a kind of vegetable, and modern nutrition studies have found that they have an anti-aging function. Our study aims to investigate the anti-aging effects of Lycium barbarum leaf flavonoid (LBLF) extracts and its underlying molecular mechanism. LBLFs were purified using D101 and polyamide resin, characterized by ultraperformance liquid chromatography coupled with mass spectrometry, and administered to hydrogen peroxide (H2O2)-treated human umbilical vein endothelial cells (HUVECs) and Caenorhabditis elegans. Appropriate enrichment conditions were optimized through dynamic adsorption and desorption experiments, the content of flavonoids reached 909.84 mg/g, rutin and kaempferol being the main ones. LBLFs attenuated H2O2-induced HUVEC apoptosis, decreased reactive oxygen species and malondialdehyde production levels, increased superoxide dismutase, glutathione peroxidase and catalase activities. Furthermore, pre-treatment with LBLF increased mRNA expression of erythropoietin (EPO) and heme oxygenase-1 (HO-1) via the mitogen-activated protein kinase (MAPK) signaling pathway in HUVECs. Compared with 100 µM rutin monomer, LBLF prolonged the lifespan of Caenorhabditis elegans, enhanced their mobility in middle life stages and upregulated expression of sod-2, gcs-1 and skn-1 genes, which indicated that the anti-aging effects of LBLF were due to its redox-modulation. Full article
Show Figures

Figure 1

Back to TopTop