Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = LiTFSI-LiODFB dual-salt carbonate electrolyte

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5366 KiB  
Article
Thermal Stability Analysis of Lithium-Ion Battery Electrolytes Based on Lithium Bis(trifluoromethanesulfonyl)imide-Lithium Difluoro(oxalato)Borate Dual-Salt
by Ya-Ping Yang, An-Chi Huang, Yan Tang, Ye-Cheng Liu, Zhi-Hao Wu, Hai-Lin Zhou, Zhi-Ping Li, Chi-Min Shu, Jun-Cheng Jiang and Zhi-Xiang Xing
Polymers 2021, 13(5), 707; https://doi.org/10.3390/polym13050707 - 26 Feb 2021
Cited by 50 | Viewed by 6286
Abstract
Lithium-ion batteries with conventional LiPF6 carbonate electrolytes are prone to failure at high temperature. In this work, the thermal stability of a dual-salt electrolyte of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium difluoro(oxalato)borate (LiODFB) in carbonate solvents was analyzed by accelerated rate calorimetry (ARC) [...] Read more.
Lithium-ion batteries with conventional LiPF6 carbonate electrolytes are prone to failure at high temperature. In this work, the thermal stability of a dual-salt electrolyte of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium difluoro(oxalato)borate (LiODFB) in carbonate solvents was analyzed by accelerated rate calorimetry (ARC) and differential scanning calorimetry (DSC). LiTFSI-LiODFB dual-salt carbonate electrolyte decomposed when the temperature exceeded 138.5 °C in the DSC test and decomposed at 271.0 °C in the ARC test. The former is the onset decomposition temperature of the solvents in the electrolyte, and the latter is the LiTFSI-LiODFB dual salts. Flynn-Wall-Ozawa, Starink, and autocatalytic models were applied to determine pyrolysis kinetic parameters. The average apparent activation energy of the dual-salt electrolyte was 53.25 kJ/mol. According to the various model fitting, the thermal decomposition process of the dual-salt electrolyte followed the autocatalytic model. The results showed that the LiTFSI-LiODFB dual-salt electrolyte is significantly better than the LiPF6 electrolyte in terms of thermal stability. Full article
Show Figures

Graphical abstract

Back to TopTop