Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Lattice W-algebras

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 378 KiB  
Article
Partial Residuated Implications Induced by Partial Triangular Norms and Partial Residuated Lattices
by Xiaohong Zhang, Nan Sheng and Rajab Ali Borzooei
Axioms 2023, 12(1), 63; https://doi.org/10.3390/axioms12010063 - 6 Jan 2023
Cited by 13 | Viewed by 2054
Abstract
This paper reveals some relations between fuzzy logic and quantum logic on partial residuated implications (PRIs) induced by partial t-norms as well as proposes partial residuated monoids (PRMs) and partial residuated lattices (PRLs) by defining partial adjoint pairs. First of all, we introduce [...] Read more.
This paper reveals some relations between fuzzy logic and quantum logic on partial residuated implications (PRIs) induced by partial t-norms as well as proposes partial residuated monoids (PRMs) and partial residuated lattices (PRLs) by defining partial adjoint pairs. First of all, we introduce the connection between lattice effect algebra and partial t-norms according to the concept of partial t-norms given by Borzooei, together with the proof that partial operation in any commutative quasiresiduated lattice is partial t-norm. Then, we offer the general form of PRI and the definition of partial fuzzy implication (PFI), give the condition that partial residuated implication is a fuzzy implication, and prove that each PRI is a PFI. Next, we propose PRLs, study their basic characteristics, discuss the correspondence between PRLs and lattice effect algebras (LEAs), and point out the relationship between LEAs and residuated partial algebras. In addition, like the definition of partial t-norms, we provide the notions of partial triangular conorms (partial t-conorms) and corresponding partial co-residuated lattices (PcRLs). Lastly, based on partial residuated lattices, we define well partial residuated lattices (wPRLs), study the filter of well partial residuated lattices, and then construct quotient structure of PRMs. Full article
(This article belongs to the Special Issue Non-classical Logics and Related Algebra Systems)
Show Figures

Figure 1

36 pages, 494 KiB  
Review
Polynomial Automorphisms, Deformation Quantization and Some Applications on Noncommutative Algebras
by Wenchao Zhang, Roman Yavich, Alexei Belov-Kanel, Farrokh Razavinia, Andrey Elishev and Jietai Yu
Mathematics 2022, 10(22), 4214; https://doi.org/10.3390/math10224214 - 11 Nov 2022
Cited by 1 | Viewed by 2015
Abstract
This paper surveys results concerning the quantization approach to the Jacobian Conjecture and related topics on noncommutative algebras. We start with a brief review of the paper and its motivations. The first section deals with the approximation by tame automorphisms and the Belov–Kontsevich [...] Read more.
This paper surveys results concerning the quantization approach to the Jacobian Conjecture and related topics on noncommutative algebras. We start with a brief review of the paper and its motivations. The first section deals with the approximation by tame automorphisms and the Belov–Kontsevich Conjecture. The second section provides quantization proof of Bergman’s centralizer theorem which has not been revisited for almost 50 years and formulates several related centralizer problems. In the third section, we investigate a free algebra analogue of a classical theorem of Białynicki-Birula’s theorem and give a noncommutative version of this famous theorem. Additionally, we consider positive-root torus actions and obtain the linearity property analogous to the Białynicki-Birula theorem. In the last sections, we introduce Feigin’s homomorphisms and we see how they help us in proving our main and fundamental theorems on screening operators and in the construction of our lattice Wn-algebras associated with sln, which is by far the simplest known approach concerning constructing such algebras until now. Full article
(This article belongs to the Special Issue Combinatorial Algebra, Computation, and Logic)
Back to TopTop