Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = LUMIP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 11547 KiB  
Article
Land-Use-Change-Induced Cooling and Precipitation Reduction in China: Insights from CMIP6 Models
by Peizhi Tian, Binyang Jian, Jianrui Li, Xitian Cai, Jiangfeng Wei and Guo Zhang
Sustainability 2023, 15(16), 12191; https://doi.org/10.3390/su151612191 - 9 Aug 2023
Cited by 3 | Viewed by 2507
Abstract
In the 21st century, the effect of land use/land cover change (LULCC) on climate has become an area of active research. To explore the effects of LULCC on temperature and precipitation in China, we used outputs from the BCC-CSM2-MR, CESM2, IPSL-CM6A-LR, and UKESM1 [...] Read more.
In the 21st century, the effect of land use/land cover change (LULCC) on climate has become an area of active research. To explore the effects of LULCC on temperature and precipitation in China, we used outputs from the BCC-CSM2-MR, CESM2, IPSL-CM6A-LR, and UKESM1 models, which participated in the Land Use Model Intercomparison Project (LUMIP) of the Coupled Model Intercomparison Project Phase 6 (CMIP6). Based on these models, we identified temporal variations in precipitation and near-surface air temperature (hereinafter temperature) with and without historical land use changes and their relation with LULCC in China during 1850–2014. We then determined the significant changing period (1972–2012) and revealed the relation between the spatial distribution of historical change in vegetation cover types, precipitation, and temperature. The results showed that annual historical precipitation decreased faster (132.23 mm/(1000 a) faster), while annual historical temperature increased slower (2.70 °C/(1000 a) slower) than that without LULCC during 1850–2014. LULCC not only influenced surface properties to change local precipitation and temperature distributions and mean values, but also affected other components through atmospheric circulations due to typical monsoon characteristics in China. The relative contribution of grassland change to precipitation variation was the largest, while relatively, cropland change contributed the most to temperature variation. Our study innovatively used new model outputs from LUMIP to analyze the impacts of LULCC on precipitation and temperature, which can help to guide and improve future land use management and predictions of precipitation and temperature. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

13 pages, 2081 KiB  
Article
Impacts of Different Land Use Scenarios on Future Global and Regional Climate Extremes
by Tao Hong, Junjie Wu, Xianbiao Kang, Min Yuan and Lian Duan
Atmosphere 2022, 13(6), 995; https://doi.org/10.3390/atmos13060995 - 20 Jun 2022
Cited by 15 | Viewed by 3396
Abstract
Land use and land cover change (LULCC) alters the character of the land surface and directly impacts the climate. The impacts of LULCC on historical and future climate have been largely investigated, mostly using simulations with or without land use change. However, it [...] Read more.
Land use and land cover change (LULCC) alters the character of the land surface and directly impacts the climate. The impacts of LULCC on historical and future climate have been largely investigated, mostly using simulations with or without land use change. However, it is still not clear to what extent the projections of future climate change depend on the choice of land use scenario, which can provide important guidance on using land use and land management as a tool for regional climate mitigation. Here, using ten Earth system models participating in future land use policy sensitivity experiments in Land Use Model Intercomparison Project (LUMIP), we assessed the impact of two different land use scenarios (SSP1-2.6 and SSP3-7.0) on extreme climate. The results demonstrate that the use of different land use change scenarios has a substantial effect on the projections of regional climate extreme changes. Our study also reveals that, compared with other anthropogenic forcings, land use change has a considerable contribution to regional temperature extreme changes, with the contribution ranging from −14.0% to 10.3%, and the contribution to regional precipitation extreme change is larger, with a range of −118.4~138.8%. The global climate effects of land use change are smaller in magnitude than regional effects, with a small (5%) contribution to temperature extreme change. We also found a large spread in the model’s responses to LULCC, especially for precipitation extremes, suggesting that observation-based studies on reducing models’ uncertainties are needed to obtain more robust future projections of regional climate change. Our study highlights the essential role of land use and land management strategies in future regional climate mitigation. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

Back to TopTop