Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = LSTM-MDN

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7646 KiB  
Article
Taxi Demand and Fare Prediction with Hybrid Models: Enhancing Efficiency and User Experience in City Transportation
by Ka Seng Chou, Kei Long Wong, Boliang Zhang, Davide Aguiari, Sio Kei Im, Chan Tong Lam, Rita Tse, Su-Kit Tang and Giovanni Pau
Appl. Sci. 2023, 13(18), 10192; https://doi.org/10.3390/app131810192 - 11 Sep 2023
Cited by 4 | Viewed by 5234
Abstract
An essential part of a city’s transportation infrastructure, taxis allow for regular encounters between drivers and customers. Nevertheless, there are issues with efficiency since there is an imbalance in the supply and demand for taxis. This study describes the creation of a platform [...] Read more.
An essential part of a city’s transportation infrastructure, taxis allow for regular encounters between drivers and customers. Nevertheless, there are issues with efficiency since there is an imbalance in the supply and demand for taxis. This study describes the creation of a platform that serves both customers and taxi drivers by offering immediate forecasts of demand and fare. Root mean squared error (RMSE) of 3.31 and a negative log-likelihood of −3.84, the long short-term memory recurrent neural network (LSTM-RNN) with the mixture density network (MDN) is employed to forecast taxi demand. The best RMSE of 3.24 is obtained for fare prediction via an ensemble learning model that integrates linear regression (LR), ridge regression (RR), and multilayer perceptron (MLP). To ensure peak performance, the models are systematically created, implemented, trained, and improved. By integrating these models into a web application interface, the taxi service system offers a better overall user experience, which improves urban mobility. Full article
Show Figures

Figure 1

21 pages, 17934 KiB  
Article
Probabilistic Maritime Trajectory Prediction in Complex Scenarios Using Deep Learning
by Kristian Aalling Sørensen, Peder Heiselberg and Henning Heiselberg
Sensors 2022, 22(5), 2058; https://doi.org/10.3390/s22052058 - 7 Mar 2022
Cited by 41 | Viewed by 4983
Abstract
Maritime activity is expected to increase, and therefore also the need for maritime surveillance and safety. Most ships are obligated to identify themselves with a transponder system like the Automatic Identification System (AIS) and ships that do not, intentionally or unintentionally, are referred [...] Read more.
Maritime activity is expected to increase, and therefore also the need for maritime surveillance and safety. Most ships are obligated to identify themselves with a transponder system like the Automatic Identification System (AIS) and ships that do not, intentionally or unintentionally, are referred to as dark ships and must be observed by other means. Knowing the future location of ships can not only help with ship/ship collision avoidance, but also with determining the identity of these dark ships found in, e.g., satellite images. However, predicting the future location of ships is inherently probabilistic and the variety of possible routes is almost limitless. We therefore introduce a Bidirectional Long-Short-Term-Memory Mixture Density Network (BLSTM-MDN) deep learning model capable of characterising the underlying distribution of ship trajectories. It is consequently possible to predict a probabilistic future location as opposed to a deterministic location. AIS data from 3631 different cargo ships are acquired from a region west of Norway spanning 320,000 sqkm. Our implemented BLSTM-MDN model characterizes the conditional probability of the target, conditioned on an input trajectory using an 11-dimensional Gaussian distribution and by inferring a single target from the distribution, we can predict several probable trajectories from the same input trajectory with a test Negative Log Likelihood loss of 9.96 corresponding to a mean distance error of 2.53 km 50 min into the future. We compare our model to both a standard BLSTM and a state-of-the-art multi-headed self-attention BLSTM model and the BLSTM-MDN performs similarly to the two deterministic deep learning models on straight trajectories, but produced better results in complex scenarios. Full article
(This article belongs to the Special Issue Remote Sensing in Vessel Detection and Navigation: Edition Ⅱ)
Show Figures

Figure 1

17 pages, 3549 KiB  
Article
Predicting Future Locations of Moving Objects by Recurrent Mixture Density Network
by Rui Chen, Mingjian Chen, Wanli Li and Naikun Guo
ISPRS Int. J. Geo-Inf. 2020, 9(2), 116; https://doi.org/10.3390/ijgi9020116 - 20 Feb 2020
Cited by 17 | Viewed by 3762
Abstract
Accurate and timely location prediction of moving objects is crucial for intelligent transportation systems and traffic management. In recent years, ubiquitous location acquisition technologies have provided the opportunity for mining knowledge from trajectories, making location prediction and real-time decisions more feasible. Previous location [...] Read more.
Accurate and timely location prediction of moving objects is crucial for intelligent transportation systems and traffic management. In recent years, ubiquitous location acquisition technologies have provided the opportunity for mining knowledge from trajectories, making location prediction and real-time decisions more feasible. Previous location prediction methods have mostly developed on the basis of shallow models whereas shallow models are not competent for some tricky challenges such as multi-time-step location coordinates prediction. Motivated by the current study status, we are dedicated to a deep-learning-based approach to predict the coordinates of several future locations of moving objects based on recent trajectory records. The method of this work consists of three successive parts: trajectory preprocessing, prediction model construction, and post-processing. In this work, a prediction model named the bidirectional recurrent mixture density network (BiRMDN) was constructed by integrating the long short-term memory (LSTM) and mixture density network (MDN) together. This model has the ability to learn long-term contextual information from recent trajectory and model real-valued location coordinates. We employed a vessel trajectory dataset for the implementation of this approach and determined the optimal model configuration after several parameter analysis experiments. Experimental results involving a performance comparison with other widely used methods demonstrate the superiority of the BiRMDN model. Full article
Show Figures

Figure 1

Back to TopTop