Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Kovar alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9720 KiB  
Article
Microscopic Analysis of the Wetting Morphology and Interfacial Bonding Mechanism of Preoxidised Kovar Alloys with Borosilicate Glass
by Jiajia Shen, Changjun Chen and Min Zhang
Materials 2023, 16(13), 4628; https://doi.org/10.3390/ma16134628 - 27 Jun 2023
Cited by 7 | Viewed by 1938
Abstract
This paper investigates the wettability of Kovar alloys with high-borosilicate glass and microscopically analyses the mechanism of wettability and diffusion between Kovar and borosilicate glass. First, Kovar was oxidised at 800 °C for 5, 15, 25, 35, and 60 min to observe the [...] Read more.
This paper investigates the wettability of Kovar alloys with high-borosilicate glass and microscopically analyses the mechanism of wettability and diffusion between Kovar and borosilicate glass. First, Kovar was oxidised at 800 °C for 5, 15, 25, 35, and 60 min to observe the oxide morphology of the Kovar surface layer and to analyse the composition of the oxide layer. To investigate the wetting pattern formations of Kovar and high-borosilicate glass under different wetting temperatures, times, and preoxidation conditions, Kovar and high-borosilicate glass obtained from different oxidation treatments were held at 1060 °C for 20 min for wetting experiments, and the glass–metal wetting interface morphology and elemental distribution were observed using SEM and EDS. The elemental diffusion at the wetting interface between the borosilicate glass and the Kovar with different preoxidation and at the glass spreading boundary was investigated. The longitudinal diffusion of the liquid glass in the metal oxide layer formed a new tight chemical bond of Fe2SiO4, and the lateral diffusion of the liquid glass in the Kovar surface layer formed a black halo. Full article
Show Figures

Figure 1

13 pages, 4367 KiB  
Article
Low Temperature Sealing Process and Properties of Kovar Alloy to DM305 Electronic Glass
by Zhenjiang Wang, Zeng Gao, Junlong Chu, Dechao Qiu and Jitai Niu
Metals 2020, 10(7), 941; https://doi.org/10.3390/met10070941 - 13 Jul 2020
Cited by 16 | Viewed by 5061
Abstract
The low temperature sealing of Kovar alloy to DM305 electronic glass was realized by using lead-free glass solder of the Bi2O3-ZnO-B2O3 system in atmospheric environment. The sealing process was optimized by pre-oxidation of Kovar alloy and [...] Read more.
The low temperature sealing of Kovar alloy to DM305 electronic glass was realized by using lead-free glass solder of the Bi2O3-ZnO-B2O3 system in atmospheric environment. The sealing process was optimized by pre-oxidation of Kovar alloy and low temperature founding of flake glass solder. The effects of sealing temperature and holding time on the properties of sealing joint were studied by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), etc. The results showed that the pre-oxidized Kovar alloy and DM305 electronic glass were successfully sealed with flake glass solder at the sealing temperature of 500 °C for 20 min. Meanwhile, the joint interface had no pores, cracks, and other defects, the shear strength was 12.24 MPa, and the leakage rate of air tightness was 8 × 10−9 Pa·m3/s. During the sealing process, element Bi in glass solder diffused into the oxide layer of Kovar alloy and DM305 electronic glass about 1 μm, respectively. Full article
(This article belongs to the Special Issue Technology of Welding and Joining)
Show Figures

Figure 1

16 pages, 7686 KiB  
Article
Joining of Silicon Particle-Reinforced Aluminum Matrix Composites to Kovar Alloys Using Active Melt-Spun Ribbons in Vacuum Conditions
by Zeng Gao, Xianli Ba, Huanyu Yang, Congxin Yin, Shanguang Liu, Jitai Niu and Josip Brnic
Materials 2020, 13(13), 2965; https://doi.org/10.3390/ma13132965 - 2 Jul 2020
Cited by 8 | Viewed by 2960
Abstract
The vacuum brazing of dissimilar electronic packaging materials has been investigated. In this research, this applies silicon particle-reinforced aluminum matrix composites (Sip/Al MMCs) to Kovar alloys. Active melt-spun ribbons were employed as brazing filler metals under different joining temperatures and times. [...] Read more.
The vacuum brazing of dissimilar electronic packaging materials has been investigated. In this research, this applies silicon particle-reinforced aluminum matrix composites (Sip/Al MMCs) to Kovar alloys. Active melt-spun ribbons were employed as brazing filler metals under different joining temperatures and times. The results showed that the maximum joint shear strength of 96.62 MPa was achieved when the joint was made using Al-7.5Si-23.0Cu-2.0Ni-1.0Ti as the brazing filler metal at 580 °C for 30 min. X-ray diffraction (XRD) analysis of the joint indicated that the main phases were composed of Al, Si and intermetallics, including CuAl, TiFeSi, TiNiSi and Al3Ti. When the brazing temperature ranged from 570 °C to 590 °C, the leakage rate of joints remained at 10−8 Pa·m3/s or better. When the joint was made using Al-7.5Si-23.0Cu-2.0Ni-2.5Ti as the brazing filler metal at 580 °C for 30 min, the higher level of Ti content in the brazing filler metal resulted in the formation of a flake-like Ti(AlSi)3 intermetallic phase with an average size of 7 µm at the interface between the brazing seam and Sip/Al MMCs. The joint fracture was generally in the form of quasi-cleavage fracture, which primarily occurred at the interface between the filler metal and the Sip/Al MMCs. The micro-crack propagated not only Ti(AlSi)3, but also the Si particles in the substrate. Full article
(This article belongs to the Collection Welding and Joining Processes of Materials)
Show Figures

Figure 1

14 pages, 4622 KiB  
Article
Influence of Welding Speed on the Microstructure and Mechanical Properties of Electron Beam-Welded Joints of TC4 and 4J29 Sheets using Cu/Nb Multi-Interlayers
by Defeng Mo, Yang Wang, Yongjian Fang, Tingfeng Song and Xiaosong Jiang
Metals 2018, 8(10), 810; https://doi.org/10.3390/met8100810 - 10 Oct 2018
Cited by 4 | Viewed by 3257
Abstract
Dissimilar metal joining between titanium and kovar alloys was conducted using electron beam welding. Metallurgical bonding of titanium alloys and kovar alloys was achieved by using a Cu/Nb multi-interlayer. The effects of welding speed on weld appearance, microstructure and mechanical properties of welded [...] Read more.
Dissimilar metal joining between titanium and kovar alloys was conducted using electron beam welding. Metallurgical bonding of titanium alloys and kovar alloys was achieved by using a Cu/Nb multi-interlayer. The effects of welding speed on weld appearance, microstructure and mechanical properties of welded joints were investigated. The microstructure of welded joints was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). The mechanical properties of welded joints were investigated by tensile strength and micro-hardness tests. The results showed that welding speed had great effects on the weld appearance, microstructure, and mechanical properties of electron beam-welded joints. With an increase of welding speed, at the titanium alloy side, the amount of (Nb,Ti) solid solution was increased, while the formation of brittle FeTi was effectively suppressed. At the kovar alloy side, microstructure was mainly composed of soft Cu solid solution and some α-Fe + γ phases. In addition, higher welding speeds within a certain range was beneficial for eliminating the formation of cracks, and inhibiting the embrittlement of welded joints. Therefore, the tensile strength of welded joints was increased to about 120 MPa for a welding speed of 10 mm/s. Furthermore, the bonding mechanism of TC4/Nb/Cu/4J29 dissimilar welded joints had been investigated and detailed. Full article
Show Figures

Figure 1

12 pages, 5721 KiB  
Article
The Interfacial Microstructure and Mechanical Properties of Diffusion-Bonded Joints of 316L Stainless Steel and the 4J29 Kovar Alloy Using Nickel as an Interlayer
by Tingfeng Song, Xiaosong Jiang, Zhenyi Shao, Defeng Mo, Degui Zhu and Minhao Zhu
Metals 2016, 6(11), 263; https://doi.org/10.3390/met6110263 - 3 Nov 2016
Cited by 20 | Viewed by 8600
Abstract
316L stainless steel (Fe–18Cr–11Ni) and a Kovar (Fe–29Ni–17Co or 4J29) alloy were diffusion-bonded via vacuum hot-pressing in a temperature range of 850–950 °C with an interval of 50 °C for 120 min and at 900 °C for 180 and 240 min, under a [...] Read more.
316L stainless steel (Fe–18Cr–11Ni) and a Kovar (Fe–29Ni–17Co or 4J29) alloy were diffusion-bonded via vacuum hot-pressing in a temperature range of 850–950 °C with an interval of 50 °C for 120 min and at 900 °C for 180 and 240 min, under a pressure of 34.66 MPa. Interfacial microstructures of diffusion-bonded joints were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). The inter-diffusion of the elements across the diffusion interface was revealed via electron probe microanalysis (EPMA). The mechanical properties of the joints were investigated via micro Vickers hardness and tensile strength. The results show that an Ni interlayer can serve as an effective diffusion barrier for the bonding of 316L stainless steel and the 4J29 Kovar alloy. The composition of the joints was 316L/Ni s.s (Fe–Cr–Ni)/remnant Ni/Ni s.s (Fe–Co–Ni)/4J29. The highest tensile strength of 504.91 MPa with an elongation of 38.75% was obtained at 900 °C for 240 min. After the width of nickel solid solution (Fe–Co–Ni) sufficiently increased, failure located at the 4J29 side and the fracture surface indicated a ductile nature. Full article
Show Figures

Figure 1

Back to TopTop