Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Koszul algebras

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 359 KiB  
Article
Superspace BRST/BV Operators of Superfield Gauge Theories
by Ioseph Lvovich Buchbinder, Sylvester James Gates and Konstantinos Koutrolikos
Symmetry 2022, 14(2), 256; https://doi.org/10.3390/sym14020256 - 28 Jan 2022
Cited by 1 | Viewed by 2134
Abstract
We consider the superspace BRST and BV description of 4D,N=1 super-Maxwell theory and its non-abelian generalization Super Yang–Mills. By fermionizing the superspace gauge transformation of the gauge superfields, we define the nilpotent superspace BRST symmetry transformation (𝓈 [...] Read more.
We consider the superspace BRST and BV description of 4D,N=1 super-Maxwell theory and its non-abelian generalization Super Yang–Mills. By fermionizing the superspace gauge transformation of the gauge superfields, we define the nilpotent superspace BRST symmetry transformation (𝓈). After introducing an appropriate set of anti-superfields and defining the superspace antibracket, we use it to construct the BV-BRST nilpotent differential operator (s) in terms of superspace covariant derivatives. The anti-superfield independent terms of s provide a superspace generalization of the Koszul–Tate resolution (δ). In the linearized limit, the set of superspace differential operators that appear in s satisfy a nonlinear algebra which can be used to construct a BRST charge Q, without requiring pure spinor variables. Q acts on the Hilbert space of superfield states, and its cohomology generates the expected superspace equations of motion. Full article
(This article belongs to the Special Issue Manifest and Hidden Symmetries in Field and String Theories)
22 pages, 393 KiB  
Article
Koszulity and Point Modules of Finitely Semi-Graded Rings and Algebras
by Oswaldo Lezama and Jaime Gomez
Symmetry 2019, 11(7), 881; https://doi.org/10.3390/sym11070881 - 4 Jul 2019
Cited by 13 | Viewed by 2555
Abstract
In this paper, we investigate the Koszul behavior of finitely semi-graded algebras by the distributivity of some associated lattice of ideals. The Hilbert series, the Poincaré series, and the Yoneda algebra are defined for this class of algebras. Moreover, the point modules and [...] Read more.
In this paper, we investigate the Koszul behavior of finitely semi-graded algebras by the distributivity of some associated lattice of ideals. The Hilbert series, the Poincaré series, and the Yoneda algebra are defined for this class of algebras. Moreover, the point modules and the point functor are introduced for finitely semi-graded rings. Finitely semi-graded algebras and rings include many important examples of non- N -graded algebras coming from mathematical physics that play a very important role in mirror symmetry problems, and for these concrete examples, the Koszulity will be established, as well as the explicit computation of its Hilbert and Poincaré series. Full article
(This article belongs to the Special Issue Mirror Symmetry and Algebraic Geometry)
60 pages, 6291 KiB  
Article
Higher Order Geometric Theory of Information and Heat Based on Poly-Symplectic Geometry of Souriau Lie Groups Thermodynamics and Their Contextures: The Bedrock for Lie Group Machine Learning
by Frédéric Barbaresco
Entropy 2018, 20(11), 840; https://doi.org/10.3390/e20110840 - 2 Nov 2018
Cited by 12 | Viewed by 5766
Abstract
We introduce poly-symplectic extension of Souriau Lie groups thermodynamics based on higher-order model of statistical physics introduced by Ingarden. This extended model could be used for small data analytics and machine learning on Lie groups. Souriau geometric theory of heat is well adapted [...] Read more.
We introduce poly-symplectic extension of Souriau Lie groups thermodynamics based on higher-order model of statistical physics introduced by Ingarden. This extended model could be used for small data analytics and machine learning on Lie groups. Souriau geometric theory of heat is well adapted to describe density of probability (maximum entropy Gibbs density) of data living on groups or on homogeneous manifolds. For small data analytics (rarified gases, sparse statistical surveys, …), the density of maximum entropy should consider higher order moments constraints (Gibbs density is not only defined by first moment but fluctuations request 2nd order and higher moments) as introduced by Ingarden. We use a poly-sympletic model introduced by Christian Günther, replacing the symplectic form by a vector-valued form. The poly-symplectic approach generalizes the Noether theorem, the existence of moment mappings, the Lie algebra structure of the space of currents, the (non-)equivariant cohomology and the classification of G-homogeneous systems. The formalism is covariant, i.e., no special coordinates or coordinate systems on the parameter space are used to construct the Hamiltonian equations. We underline the contextures of these models, and the process to build these generic structures. We also introduce a more synthetic Koszul definition of Fisher Metric, based on the Souriau model, that we name Souriau-Fisher metric. This Lie groups thermodynamics is the bedrock for Lie group machine learning providing a full covariant maximum entropy Gibbs density based on representation theory (symplectic structure of coadjoint orbits for Souriau non-equivariant model associated to a class of co-homology). Full article
Show Figures

Figure 1

72 pages, 7800 KiB  
Article
Geometric Theory of Heat from Souriau Lie Groups Thermodynamics and Koszul Hessian Geometry: Applications in Information Geometry for Exponential Families
by Frédéric Barbaresco
Entropy 2016, 18(11), 386; https://doi.org/10.3390/e18110386 - 4 Nov 2016
Cited by 28 | Viewed by 11074
Abstract
We introduce the symplectic structure of information geometry based on Souriau’s Lie group thermodynamics model, with a covariant definition of Gibbs equilibrium via invariances through co-adjoint action of a group on its moment space, defining physical observables like energy, heat, and moment as [...] Read more.
We introduce the symplectic structure of information geometry based on Souriau’s Lie group thermodynamics model, with a covariant definition of Gibbs equilibrium via invariances through co-adjoint action of a group on its moment space, defining physical observables like energy, heat, and moment as pure geometrical objects. Using geometric Planck temperature of Souriau model and symplectic cocycle notion, the Fisher metric is identified as a Souriau geometric heat capacity. The Souriau model is based on affine representation of Lie group and Lie algebra that we compare with Koszul works on G/K homogeneous space and bijective correspondence between the set of G-invariant flat connections on G/K and the set of affine representations of the Lie algebra of G. In the framework of Lie group thermodynamics, an Euler-Poincaré equation is elaborated with respect to thermodynamic variables, and a new variational principal for thermodynamics is built through an invariant Poincaré-Cartan-Souriau integral. The Souriau-Fisher metric is linked to KKS (Kostant–Kirillov–Souriau) 2-form that associates a canonical homogeneous symplectic manifold to the co-adjoint orbits. We apply this model in the framework of information geometry for the action of an affine group for exponential families, and provide some illustrations of use cases for multivariate gaussian densities. Information geometry is presented in the context of the seminal work of Fréchet and his Clairaut-Legendre equation. The Souriau model of statistical physics is validated as compatible with the Balian gauge model of thermodynamics. We recall the precursor work of Casalis on affine group invariance for natural exponential families. Full article
(This article belongs to the Special Issue Differential Geometrical Theory of Statistics)
Show Figures

Figure 1

45 pages, 2994 KiB  
Article
Koszul Information Geometry and Souriau Geometric Temperature/Capacity of Lie Group Thermodynamics
by Frédéric Barbaresco
Entropy 2014, 16(8), 4521-4565; https://doi.org/10.3390/e16084521 - 12 Aug 2014
Cited by 44 | Viewed by 10210
Abstract
The François Massieu 1869 idea to derive some mechanical and thermal properties of physical systems from “Characteristic Functions”, was developed by Gibbs and Duhem in thermodynamics with the concept of potentials, and introduced by Poincaré in probability. This paper deals with generalization of [...] Read more.
The François Massieu 1869 idea to derive some mechanical and thermal properties of physical systems from “Characteristic Functions”, was developed by Gibbs and Duhem in thermodynamics with the concept of potentials, and introduced by Poincaré in probability. This paper deals with generalization of this Characteristic Function concept by Jean-Louis Koszul in Mathematics and by Jean-Marie Souriau in Statistical Physics. The Koszul-Vinberg Characteristic Function (KVCF) on convex cones will be presented as cornerstone of “Information Geometry” theory, defining Koszul Entropy as Legendre transform of minus the logarithm of KVCF, and Fisher Information Metrics as hessian of these dual functions, invariant by their automorphisms. In parallel, Souriau has extended the Characteristic Function in Statistical Physics looking for other kinds of invariances through co-adjoint action of a group on its momentum space, defining physical observables like energy, heat and momentum as pure geometrical objects. In covariant Souriau model, Gibbs equilibriums states are indexed by a geometric parameter, the Geometric (Planck) Temperature, with values in the Lie algebra of the dynamical Galileo/Poincaré groups, interpreted as a space-time vector, giving to the metric tensor a null Lie derivative. Fisher Information metric appears as the opposite of the derivative of Mean “Moment map” by geometric temperature, equivalent to a Geometric Capacity or Specific Heat. We will synthetize the analogies between both Koszul and Souriau models, and will reduce their definitions to the exclusive Cartan “Inner Product”. Interpreting Legendre transform as Fourier transform in (Min,+) algebra, we conclude with a definition of Entropy given by a relation mixing Fourier/Laplace transforms: Entropy = (minus) Fourier(Min,+) o Log o Laplace(+,X). Full article
(This article belongs to the Special Issue Information, Entropy and Their Geometric Structures)
Show Figures

10 pages, 536 KiB  
Article
Crossed Modules of Algebras
by Zekeriya Arvasi
Math. Comput. Appl. 2004, 9(2), 173-182; https://doi.org/10.3390/mca9020173 - 1 Aug 2004
Cited by 5 | Viewed by 1472
Abstract
In this paper we will give some algebraic results of crossed modules of algebras. Full article
Back to TopTop