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Abstract - In this paper we will give some algebraic results of crossed modules of
algebras.
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1LINTRODUCTION

Crossed modules were invented by JH.L.Whitehead in his work on
combinatorial homotopy theory [14]. They have found important roles in many areas of
mathematics (including homotopy theory, homology and cohomology of groups,
algebraic K-theory, cyclic homology, combinatorial group theory, and differential
geometry). Possible crossed modules should now be considered one of the fundamental
algebraic structures.

Crossed modules of algebras are generalisation of both modules and ideals any

rings (algebras) is a crossed module, so it is of interest to see generalisation of ring
(algebra) theoretic concepts and structures (o crossed modules. The commutative
algebra version of crossed modules has been used, in essence rather than in name by
Lichtenbaum-Schlessinger [8] also work of Gerstenhaber [6] essentially involves the
notion of crossed modules in associative and commutative algebras, c.f. Lue [9]. The
free crossed modules are related to Koszul complex construction (c.f. Porter [11], [12]
and Arvasi and Porter [3]) and higher dimensional analogues have been proposed by
Ellis {5] for use in homotopical and homological algebras.
Although the general theory of crossed modules of algebras (not necessarily
commutative) doés not exist in print yet, except Nizar, [10], our aim in this notes is to
introduce the algebraic results in this theory. We will look at the substructures and
ideals of crossed modules. To form factor crossed modules we need to work that out
with some conditions on the ideals. This paper also contains the factorisation theorem of
morphisms between crossed modules.

2. CROSSED MODULES AND EXAMPLES

JH.C.Whitehead (1949) [14] described crossed modules in various contexts
especially in his investigations into the algebraic structure of relative homotopy groups.
In this section, we recall the definition and elementary theory of crossed modules of
commutative algebras given by T.Porter, [11]. More details about this may be found in
[10] and [5].
We recall that if M and R are algebra, a map

RXM —M

(rym)——>r-m,
is a left action if and only if
L k(r-m)y=r)-m=r-(km),
2. re(me+m=r-m+r-m,
3.(r+rym=r-m+r-m,
4. r-(mm") = (r-m)m’ = m{rm’),
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5 (7Y m=r{r-m),

forall kek, mm'e M, r,”’e R. A right action can be defined in a similar way,
Throughout this thesis we denote a left action and a right action of r€ R on me M by
r-m and bym-r respectively.

Let R be a k-—algebra with identity. A pre-crossed module of algebras is an
R —algebra C, together with an action of R on C and an R --algebra morphism

d:C >R,
such that for all ce C, re R
CM1) d(r-c)=rd(c), and dc-r) = c)r
This is a crossed R-module if in addition, for all ¢,¢’e C,
CM2) der¢’ =c¢c’, and ¢ 9¢” = ¢c’

The last condition is called the Peiffer identity. We denote such a crossed module by
(C,R,9). Clearly any crossed module is a pre-crossed module.

A morphism of crossed modules from (C,R,9) to (C’,R’,d") is a pair of k-algebra
morphisms,
6:C—>C, w:R-F
such that
O(rc) =y (r)-0(c),8(c-r)=0(c)-w(r) and 9'0(c) = yd(c).
In this case, we shall say that 6 is a crossed R -module morphism if R =R’ and y is

the identity. We therefore can define the category of crossed modules denoting it as
Xmod.

Clearly the composition of two maps of crossed modules over R is a map of crossed
R -modules. Thus we get a subcategory XMod/R of XMod

2.1. Examples

1. Let I be any ideal of a k —algebra R. Consider an inclusion map
' inc.:7 - R.
Then (I,R,inc.) is a crossed module. Conversely given any crossed R —module

d:C — R , one can easily verify that dC =1 is an ideal in R.

2. Let M be any R-bimodule. It can be considered as an R —algebra with zero
multiplication, and then 0:M — R isacrossed R-module by 0{c)-¢’=0c"=0=c¢’,
forall c,c’'e M.

Conversely, given any crossed module d: C — R, then Kerd is an R/dC ~module. For
this, see Proposition 1 ' _

3. A simplicial algebra E consists of a family of algebras {E,} together with
face and degeneracy maps

d,=d”E, —E _, 0Si<n,(n#0) and s,=5,":E, > E 0<i<n,
satisfying the usual simplicial identities given in [3] for example. It can be completely
described as a functor E:AY — A‘lg,c where A is the category of finite ordinals

bl ?

fn}={0<1<..<n} and increasing maps.
Given a simplicial algebra E and a simplicial ideal 1. The inclusion
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inc. I—E,
induces a map
0:7y (D) —>n,(E),
and E acting on I by multiplication induces an action of #,(E) on n,(I). Then
(7,(1),m,(E),0) is a crossed module.
4. Suppose that R is the algebra Aut(C)) of automorphisms of some algebras C.

Then the homomorphism € — R which sends an element x& C to the innmer
automorphism C — C, ¢ — xc is a crossed module.

3. SOME BASIC ALGEBRAIC PROPERTIES OF CROSSED MODULES
The following results prove consequences of the definition of crossed modules and
state some properties of those algebras. ( see [2])

Proposition 1 [2] If (C,R,d) is a crossed R—module, then

- i) Kerd is a central ideal of C,
ii) both C/C* and Kerd have natural R/9C —module structure.
Proof. [2] i) Since, for ce C,ae Kerd,
ac=0a-c=0c=0=c0=c-da=ca
as required.
ii) It is enough to show that 8C acts trivially on Kerd and C/ ce. 3
For ae Kerd,dce 0C, by dc-a=ca=c-da=c0=0,0C acts trivially on Kero .
For dce 0C,c’+Ce C / C?, we obtain the following '
e (+CH=0c-+C?
=cc’+C*
=0,
so dC acts trivially on C/ C? . Hence we can unambiguously define maps
RjOCxKerd — Kerd ~ R/ICXC/C* —C/C?
(r+0c,a) > ra (r+dc,c+CH = re+C?
and it is routine to check that this turns the abelian groups Kerd and C/C* into
R/9C —modules. Thus Kerd and C/C? have R/3C —module structure.
Let M',M and M” be algebras. Two maps
M —L oMb M’
are exact at M if Im f = Kerg. A sequence of maps ( perhaps infinitely long )
M~ M —Ls M
is exact if each adjacent pair of maps is exact.

As aresult of the prevzous result we have two exact sequences:
0> Kerd - C —>Imd —0

LY
- TRRS

n-1

and
0—-Imd—->R->R/Imd—0

Proposition 2 The exact sequence
0— Kerd > C —Imd — 0
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induces the following exact sequence
Kerd > CIC* - 1/1* =0

where I =1Imd .
Proof. To prove the above sequence is exact we need to show that: (i) the morphism

0: C/C* = I/1* is onto, (ii) Kerd maps onto the kernel of 9 i.e. each element ¢ + C?
in kernel @ is of the form & +C?, for some k € Kerd We know that the diagram

v
<

0 » Kerd » G » ]

N

i ———
c/c? yr 0

0

is commutative, and ¢ is onto, then d is onto, and the image of Kerd — C/ C? is

contained in Kerd

(i) if ¢+ C*eKerd, then

Hc+CH=)+I*=1"

and d(c)e I%. Thus d(c) =(B)A(b") = d(bb"), for some b,b’e C. This implies that
(¢—bb")e Kerd, ie. (c~bb)=k, for some ke Kerd, but then c+C*> =k+C?, so
Kerd mapped onto Kerd.

Proposotion 3 Let w :(C,R,3) — (B,R,B) be a morphism of crossed R~modules.
Then (C,B,y) is a crossed B—module, where B acts on C via f.

Proof. We have the following commutative diagram

14

!
\ 4
=

where ¥ is a morphism of R—algebras and B acts on C via B, i.e. for ce C and

be B we have
cb=c-B(b) and bc = B(b)-c.
Now we need to check that y is a morphism of B-—algebras, and satisfies the

conditions CM1, and CM2. Let ce C, and be B then we have
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y(c-b)=y(chb)
= (c)B(b)
=y (¢)b.
Also for ¢,c’e C,
- gc-c' = Pplc)-c
=d(c)-c’
=cc.
Similarly ¢-yc” = cc’. Thus the axioms of a crossed modules are satisfied.
Thus by 2.1 w(C) is an ideal in B.
Proposotion 4 Let (C,B,0) be a crossed B~module and (B,R,B) be a crossed
R—module such that R acts on C where the action is compatible with B - action
onC, then (C,R, f0) is a crossed R—module.
Proof, The only' thing we need to check is the Peiffer identity. If ¢,c’e C, then
c-(Bocy=c-BOcy=c-0c"=cc.

Thus 0 is a crossed module. Similarly (80c)- ¢’ = cc’.

4. SUBCROSSED MODULES, CROSSED IDEALS AND FACTOR CROSSED
MODULES
In regard to mathematical structures, the substructures, subgroups, subfields and’
subspaces of topological spaces, generally play an important role. In the investigation of
crossed modules the subcrossed modules and crossed modules and crossed ideals, both
of which are about to be defined to be defined, are correspondingly important.
A subcrossed module of a crossed R~module (C,R,0) is a crossed R-—module

(C',R,9") such that C” is a subalgebra of C, and @' =d|.:C’— R, the restriction of
dtoC.

4.1. Remarks

1. Let C° be a subcrossed module of C, then for ceC and
x€Ccx=0c-xe C’ similarly, xce C". Therefore C’ is an ideal in C. Thus a
subcrossed module is an ideal C* of C with restriction "= |.: C"— R.

2. A subcrossed module should be a subobject in the categorical sense. For this
we need to check that the inclusion of into is a monomorphism of crossed module.
This is easy and obvious from definition.

4.2. Examples

Any ideal I of the ring R will give a subcrossed module (I, R,inc) of the
crossed module (R,R,id;).

The submodules of any module M over R, considered as a crossed module (M,R,0)
are subcrossed modules of M.

Our aim is to recall the definition of the “normal” subcrossed modules of a crossed
module C in XMod/R . We will call them “crossed ideals”. It is well-known that in
ring theory kernels and ideals are the same, i.e., each ideal I of a ring R is the kernel of
the canonical homomorphism v:R-—> R/Iof rings, and each kernel of a ring
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homomorphism is an ideal. Suppose here we define a crossed ideal, to be a subcrossed
module C” of C which is a kernel of the morphism

Vv
C > c/C’

0 d

R

of crossed R—modules, where v(¢) =¢+C’ and 5(0 +CY=0d(c), force C.

Clearly 0 is well defined if and only if C’ is contained in Kerd since, if
c+C'=c"+C, then (c-c¢)e C’ thus c=c¢’+x forsome xe C’ and so 9(c) = (")
if and only if xe& Kerd Therefore the crossed ideals of the crossed module

d:C——R are all those subcrossed modules €’ of C which are contained in
Kerd . Also from 2.1 and 2.3 , the kernel of any morphism

f

of crossed modules is a subcrossed module of C and is contained in  Kerd since
Bf =4d.

Thus we get following result:

Proposition 5 Let (C,R,0) be a crossed R—modules and (C’,R,9") be a subcrossed

module of (C,R,d) , then (C/C’,R,d) is a factor crossed R—module in XMod /R if
and only if C’ is contained in Kerd where 9 is given by, 9(c+C") = d, forceC.
Note that factor crossed modules are not always defined in XMod/R e.g in the

following commutative
' id.
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the factor C/C is not a crossed R —module.

Alsoif f:C——B is a morphism of crossed R -modules such that (B/Im f B) isa
factor crossed module of B modulo Im f then Imf C Kerf8 and thus d=0 so C
will be an R ~module.

Proposition 6 Each morphism of crossed R-modules in XMod/R can be uniquely
Jactorised as a regular epimorphism followed by monomorphism. _
Proof. lLet f:C——B be a morphism of crossed R-modules. Since
Kerf ¢ Kerd thereferé we can define the morphism 5:(7/ Kerf — R by
d(c + Kerf) =0, which gives C/Kerf the structure of a crossed R-—-module. Thus we

have a canonical morphism p:C——C/Kerf of crossed R—modules. We will show
that this morphism is a regular epimorphism. Let

T =CxKerf ={(c,m):ce C} and me Kerd
be the semidirect product, we will define a crossed R-module structure on T .
Define the multiplication as follows, for any (c,m) and (¢’,m"eT

(c,m)(c’,m") = (cc’,cm’ + mc”)
=(cc’,0), since mc’ =9, -c=0=cm’
The ring R acts on T by obvious way, and the morphism 7:7-—3>R given by
T{cm) = d, satisfied the rules CM1 and CM2. Since
T(c,m).(c",m) = dclc’,m")
=(de-c’,dc-m)
=(cc’,0)
=(c,m)(¢’,m).
Thus (T,7) is acrossed R—module.
Define two morphism s,t:T——>C by s(c,m)=c and t(c,m)=c+m These two
morphism are morphisms of crossed R-modules such that ps = pt
Note that s((c,m)(c’,m")) = 5(ce”,0) = cc” = s{c,m)s(c’,m") and
t{(c,m)(c’,m"Y) =t(cc’,0) = ¢’
=cc’ +mm +cm' +mc’
={c+m)(c’ +m)
= t(c, m)t(c’,m).
Thus the morphisms s and 7 are R —algebra morphisms.
Suppose there is a morphism g :C—— D of crossed R-modules, such that gs = gt
then there is a unique morphism g": C/Kerf —— D givenby g'(c+ Kerf) = g(c) .
Note that the morphism f : C—— B satisfies the condition fy = fi therefore there is
a unique morphism U :C/Kerf — B givenby u(c+ Kerf) = g(c) ‘
We will now check that the morphism g is a monomorphism. Suppose there are two
morphism h,4": X —>C/Kerf of crossed R-modules such that uh= ph’ Suppose
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that A # k' then there exists x& X such that A(x) = x+ Kerf # h'(x) = x"+ Kerf’ for
some x,x'€ X but uh(x)=ph'(x) ie. w(x+ Kerf)= u(x"+ Kerf) that is Thus
(x~x)ye Kerf so x=x"+m for some me Kerf '
hence x + Kerf = (x"+m)+x"+ Kerf Hence u is a monomorphism. Thus f = up.
Theorem 7 Let f.C-——B be a morphism of crossed R—modules in XMod/R .
Then
C/Kerf =Im f
Proof. The isomorphism can be defined as follows
8 : C/Kerf ——Imf
¢+ Kerf > f(c).
4.3 Examples k
(1) The crossed ideals of the crossed R-—modules (R, R,0)are all the ideals, I,
of the ring R considered as crossed module (I,R,0) with the inclusion
inc.: I ——3 R as a morphism of crossed R —modules.
(2) The submodules of an R-—module AM considered as a crossed R—module
(M, R,0) are crossed ideals.
(3) There are subcrossed modules which are not crossed ideals. Consider the
crossed module (Z,id,) and (nZ,inc.) be any subcrossed module with ne Z The

following diagram

inc

v
[

nd.

=¥
™

Z

commutes. Also rnZ by no way could be a kemel of a morphism of crossed

Z —modules.
A subcrossed module of a crossed module (C,R,d) in XMed consists of

(i) asubalgebra C’ of C and asubring R’ of R

(ii) an action of R” on C’ induced by the action of Ron C

(i) (C’,R’,d") isacrossed R-module

(iv) The following diagram of morphisms of crossed modules in XMod

u
C

e C
d ia
_—p
Y R

RI
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commutes, where u and v are the inclusions.
A subcrossed module (C’,R’,d") of a crossed module (C,R,0) will be called a crossed
ideal in XMod if
(i) C'CuCC’cC and R isanidealin R
(i) CRR'UR'CcC,
(ii) C’ is closed under the action of Rie., RC,CRcC’.
4.4. Examples

1. The crossed module (R,R,inc) has subcrossed modules given by all pairs (1))
where I is an ideal, J is a subring of R which contains I.

2. Let | be any ideal in the ring R, then (1], inc.) is a crossed ideal of (R,R,inc).

3. If I be two sided ideals of R then we can consider them as two crossed
modules, (I,R,inc;) and (I',R,inc,) then ((INI),1,v) and (I ] ), I'v") are
~ideals in (I, R,inc,) and (I',R,inc,) respectively.
Proposition 7 The intersection of any family of subcrossed modules (respectively
crossed ideals) {(1,,J,,9,)} of a crossed module (C,R,0) is a subcrossed module
(respectively crossed ideal) of (C,R,0) .
Proof. Let A be aset of index and let

I, 1,8)=[U:xJ,-9,).

eh
If x,yeland ceC then x—yeJ and xce C as x,ye J, and J, £R forall

i€ A . Similarly once can eaisly shown that ! is a sub algebra of C.
4.5, Factor crossed modules

The definition of factor crossed modules holds as in the case of factor ring
module some ideal J of R .

Let (C',R’,3) be anideal in (C,R,d) then the ring R acts on C/C” and R* acts
trivially on C/C” since #'(c+C’)=r'c+C which is the trivial element of C/C’ since
r'‘ce C’ therefore the factor ring R/R’ acts on the ring C/C’ and hence 9 induced
a morphism
9:C/C"——RIR

given by d(c+C)=3(c)+ R’ for ce C
The following result can be easily proved.
Proposition 8 Let (C/C’,R/R’,®) be a crossed module defined above. Then the
universal property holds for crossed modules. That is there is a morphism
(pespr):C——C 1 C’ of crossed modules, such that given any morphism

W,9):(C,R,0)——(B,S, B)
of crossed modules, with w(c)=0 and c'€ C',¥'€ R’ for any there is a unique
morphism (f,8):C/C'—— B of crossed modules with fp. =¢@ and gp. =V .
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