Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Khanka massif

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4580 KiB  
Article
Early Ordovician Age of Fluorite-Rare-Metal Deposits at the Voznesensky Ore District (Far East, Russia): Evidence from Zircon and Cassiterite U–Pb and Fluorite Sm–Nd Dating Results
by Nailya G. Rizvanova, Antonina A. Alenicheva, Sergey G. Skublov, Sergey A. Sergeev and Dmitriy A. Lykhin
Minerals 2021, 11(11), 1154; https://doi.org/10.3390/min11111154 - 20 Oct 2021
Cited by 6 | Viewed by 2803
Abstract
This article presents new isotope-geochronological results for the granites of the Voznesensky ore district (southeastern part of the Khanka massif). The granites are associated with extensive rare-metal–fluorite, tin and tantalum mineralization. Despite the numerous published results of Rb–Sr, Sm–Nd and U–Pb dating of [...] Read more.
This article presents new isotope-geochronological results for the granites of the Voznesensky ore district (southeastern part of the Khanka massif). The granites are associated with extensive rare-metal–fluorite, tin and tantalum mineralization. Despite the numerous published results of Rb–Sr, Sm–Nd and U–Pb dating of ore-bearing granites and associated ores, the issues of age correlation and the genetic relationship of igneous rocks and mineralization remain unclear. U–Pb zircon SHRIMP dating reveals synchronous ages of 478 ± 4 Ma and 481 ± 7 Ma for two samples of biotite leucogranites as the age of magmatic crystallization of the Voznesensky granites. The composition of the studied zircon demonstrates the typical features of magmatic zircon and has the typical features of zircon exposed to fluids at the late/post-magmatic stage. Sm–Nd ID-TIMS dating of the fluorite of the Voznesenskoe deposit yields an age of 477 ± 9 Ma, and U–Pb ID-TIMS dating of cassiterite from the Yaroslavskoe and Chapaevskoe tin deposits yields an age of 480 ± 4 Ma, which confirms the direct genetic and age relationship of ore formation with granite magmatism. Full article
(This article belongs to the Special Issue Cassiterite: The U-Pb Mineral Geochronometer)
Show Figures

Figure 1

Back to TopTop