Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Kandy city

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4673 KiB  
Article
Analysis of Life Quality in a Tropical Mountain City Using a Multi-Criteria Geospatial Technique: A Case Study of Kandy City, Sri Lanka
by DMSLB Dissanayake, Takehiro Morimoto, Yuji Murayama, Manjula Ranagalage and ENC Perera
Sustainability 2020, 12(7), 2918; https://doi.org/10.3390/su12072918 - 6 Apr 2020
Cited by 22 | Viewed by 5719
Abstract
The blooming of urban expansion has led to the improvement of urban life, but some of the negative externalities have affected the life quality of urban dwellers, both directly and indirectly. As a result of this, research related to the quality of life [...] Read more.
The blooming of urban expansion has led to the improvement of urban life, but some of the negative externalities have affected the life quality of urban dwellers, both directly and indirectly. As a result of this, research related to the quality of life has gained much attention among multidisciplinary researchers around the world. A number of attempts have been made by previous researchers to identify, assess, quantify, and map quality of life or well-being under various kinds of perspectives. The objectives of this research were to create a life quality index (LQI) and identify the spatial distribution pattern of LQI in Kandy City, Sri Lanka. Multiple factors were decomposed, a hierarchy was constructed by the multi-criteria decision making (MCDM) method, and 13 factors were selected under two main criteria—environmental and socioeconomic. Pairwise comparison matrices were created, and the weight of each factor was determined by the analytic hierarchy process (AHP). Finally, gradient analysis was employed to examine the spatial distribution pattern of LQI from the city center to the periphery. The results show that socioeconomic factors affect the quality of life more strongly than environmental factors, and the most significant factor is transportation. The highest life quality zones (26% of the total area) were distributed around the city center, while the lowest zones represented only 9% of the whole area. As shown in the gradient analysis, more than 50% of the land in the first five kilometers from the city center comes under the highest life quality zone. This research will provide guidance for the residents and respective administrative bodies to make Kandy City a livable city. It the constructed model can be applied to any geographical area by conducting necessary data calibration. Full article
Show Figures

Figure 1

20 pages, 6985 KiB  
Article
Land-Use/Land-Cover Changes and Their Impact on Surface Urban Heat Islands: Case Study of Kandy City, Sri Lanka
by DMSLB Dissanayake, Takehiro Morimoto, Manjula Ranagalage and Yuji Murayama
Climate 2019, 7(8), 99; https://doi.org/10.3390/cli7080099 - 14 Aug 2019
Cited by 87 | Viewed by 13048
Abstract
An urban heat island (UHI) is a phenomenon that shows a higher temperature in urban areas compared to surrounding rural areas due to the impact of impervious surface (IS) density, and other anthropogenic activities including changes of land use/land cover (LULC). The purpose [...] Read more.
An urban heat island (UHI) is a phenomenon that shows a higher temperature in urban areas compared to surrounding rural areas due to the impact of impervious surface (IS) density, and other anthropogenic activities including changes of land use/land cover (LULC). The purpose of this research is to examine the spatiotemporal land-use/land-cover changes and their impact on the surface UHI (SUHI) in Kandy City, Sri Lanka, using Landsat data and geospatial techniques. LULC classification was made by using a pixel-oriented supervised classification method, and LULC changes were computed by using a cross-cover comparison. The SUHI effect was discussed mainly through the variation of land-surface temperature (LST) over persistent IS and newly added IS. The study showed the dynamics of each LULC and its role in the SUHI. The results showed that IS areas expanded from 529 to 1514 ha (2.3% to 6.7% of the total land area) between 1996 and 2006, and to 5833 ha (23.9% of the total land area) in 2017, with an annual growth rate of 11.1% per year from 1996 to 2006 and 12.2% per year from 2006 to 2017. A gradually declining trend was observed in forest areas. Persistent IS reported the highest mean LST areas compared to newly added IS. The mean LST difference between persistent IS and newly added IS was 1.43 °C over the study period. This is because areas of persistent IS are typically surrounded by IS even in their neighborhoods, whereas areas of newly added IS occur at the edges of the city and are, therefore, cooled by the surrounding nonurban surfaces. This calls for appropriate green-oriented landscape-management methods to mitigate the impact of the SUHI in Kandy City. The findings of the study showed that LULC changes and their effect on the SUHI from 1996 to 2017 made a significant contribution to long records of change dynamics. Full article
(This article belongs to the Special Issue Urban Heat Islands)
Show Figures

Figure 1

18 pages, 8336 KiB  
Article
Quantifying Surface Urban Heat Island Formation in the World Heritage Tropical Mountain City of Sri Lanka
by Manjula Ranagalage, DMSLB Dissanayake, Yuji Murayama, Xinmin Zhang, Ronald C. Estoque, ENC Perera and Takehiro Morimoto
ISPRS Int. J. Geo-Inf. 2018, 7(9), 341; https://doi.org/10.3390/ijgi7090341 - 22 Aug 2018
Cited by 56 | Viewed by 7641
Abstract
Presently, the urban heat island (UHI) phenomenon, and its adverse impacts, are becoming major research foci in various interrelated fields due to rapid changes in urban ecological environments. Various cities have been investigated in previous studies, and most of the findings have facilitated [...] Read more.
Presently, the urban heat island (UHI) phenomenon, and its adverse impacts, are becoming major research foci in various interrelated fields due to rapid changes in urban ecological environments. Various cities have been investigated in previous studies, and most of the findings have facilitated the introduction of proper mitigation measures to overcome the negative impact of UHI. At present, most of the mountain cities of the world have undergone rapid urban development, and this has resulted in the increasing surface UHI (SUHI) phenomenon. Hence, this study focuses on quantifying SUHI in Kandy City, the world heritage tropical mountain city of Sri Lanka, using Landsat data (1996 and 2017) based on the mean land surface temperature (LST), the difference between the fraction of impervious surfaces (IS), and the fraction of green space (GS). Additionally, we examined the relationship of LST to the green space/impervious surface fraction ratio (GS/IS fraction ratio) and the magnitude of the GS/IS fraction ratio. The SUHI intensity (SUHII) was calculated based on the temperature difference between main land use/cover categories and the temperature difference between urban-rural zones. We demarcated the rural zone based on the fraction of IS recorded, <10%, along with the urban-rural gradient zone. The result shows a SUHII increase from 3.9 °C in 1996 to 6.2 °C in 2017 along the urban-rural gradient between the urban and rural zones (10 < IS). These results relate to the rapid urban expansion of the study areas from 1996 to 2017. Most of the natural surfaces have changed to impervious surfaces, causing an increase of SUHI in Kandy City. The mean LST has a positive relationship with the fraction of IS and a negative relationship with the fraction of GS. Additionally, the GS/IS fraction ratio shows a rapid decline. Thus, the findings of this study can be considered as a proxy indicator for introducing proper landscape and urban planning for the World Heritage tropical mountain city of Kandy in Sri Lanka. Full article
Show Figures

Graphical abstract

Back to TopTop