Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Kagenfels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4925 KiB  
Article
An Exploration Study of the Kagenfels and Natzwiller Granites, Northern Vosges Mountains, France: A Combined Approach of Stream Sediment Geochemistry and Automated Mineralogy
by Benedikt M. Steiner, Gavyn K. Rollinson and John M. Condron
Minerals 2019, 9(12), 750; https://doi.org/10.3390/min9120750 - 3 Dec 2019
Cited by 5 | Viewed by 4850
Abstract
Following a regional reconnaissance stream sediment survey that was carried out in the northern Vosges Mountains in 1983, a total of 20 stream sediment samples were collected with the aim of assessing the regional prospectivity for the granite-hosted base and rare metal mineralisation [...] Read more.
Following a regional reconnaissance stream sediment survey that was carried out in the northern Vosges Mountains in 1983, a total of 20 stream sediment samples were collected with the aim of assessing the regional prospectivity for the granite-hosted base and rare metal mineralisation of the northern Vosges magmatic suite near Schirmeck. A particular focus of the investigation was the suspected presence of W, Nb and Ta geochemical occurrences in S-type (Kagenfels) and I-S-type (Natzwiller) granites outlined in public domain data. Multi-element geochemical assays revealed the presence of fault-controlled Sn, W, Nb mineralisation assemblages along the margins of the Natzwiller and Kagenfels granites. Characteristic geochemical fractionation and principal component analysis (PCA) trends along with mineralogical evidence in the form of cassiterite, wolframite, ilmenorutile and columbite phases and muscovite–chlorite–tourmaline hydrothermal alteration association assemblages in stream sediments demonstrate that, in the northern Vosges, S-type and fractionated hybrid I-S-type granites are enriched in incompatible, late-stage magmatic elements. This is attributed to magmatic fractionation and hydrothermal alteration trends and the presence of fluxing elements in late-stage granitic melts. This study shows that the fractionated granite suites in the northern Vosges Mountains contain rare metal mineralisation indicators and therefore represent possible targets for follow-up mineral exploration. The application of automated mineralogy (QEMSCAN®) in regional stream sediment sampling added significant value by linking geochemistry and mineralogy. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration)
Show Figures

Graphical abstract

Back to TopTop