Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = KTiOxs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2885 KiB  
Communication
Potassium-Incorporated Titanium Oxide Nanoparticles Modulate Human Dendritic Cell Immune Response to Mycobacterium leprae
by Sam Warren, So Yoon Lee, Jose Barragan, Piya Kositangool, Hatsuko Yoshikubo and Jorge Cervantes
Microbiol. Res. 2023, 14(2), 787-797; https://doi.org/10.3390/microbiolres14020055 - 13 Jun 2023
Viewed by 2179
Abstract
The two polar clinical forms of leprosy, termed tuberculoid and lepromatous, have polarized cellular immune responses with complex immunological distinctions. The predominance of DCs in tuberculoid leprosy has been reported, while the lepromatous pattern of illness is associated with weak activation of local [...] Read more.
The two polar clinical forms of leprosy, termed tuberculoid and lepromatous, have polarized cellular immune responses with complex immunological distinctions. The predominance of DCs in tuberculoid leprosy has been reported, while the lepromatous pattern of illness is associated with weak activation of local populations of DCs. TiO2 nanoparticles have previously been shown to induce maturation of these cells, leading to an inflammatory response similar to adjuvant usage in vaccine administration. We aimed to evaluate the effect of potassium-incorporated Ti oxide nanostructures, namely KTiOxs, in the response of human monocyte-derived DCs to live M. leprae. Human monocytic cell line dual THP-1, which harbors two inducible reporter plasmid systems for transcription factor activation of NF-κB and interferon regulating factor (IRF), was treated with titanium control or with 1 mol/L KOH-treated Ti or 10 mol/L KOH for 24 h. Subsequently, cells were infected with M. leprae. KTiOx nanoparticles increase DC phagocytic activity without inflammation. KTiOx exposure of DCs led to an increase in IRF activation with modulation of the inflammatory response to live M. leprae. It also led to differential secretion of the critical components of innate immune response and the development of cell-mediated immunity against intracellular pathogens. This study demonstrates the effect of nanostructures of KTiOxs and the usefulness of nanoparticle technology in the in vitro activation of human DCs against an infectious disease with a puzzling immune spectrum. Our findings may prompt future therapeutic strategies, such as DC immunotherapy for disseminated and progressive lepromatous lesions. Full article
Show Figures

Figure 1

15 pages, 8770 KiB  
Article
Facile Synthesis of Potassium-Doped Titanium Oxide Nanostructure (KTiOxs)/AlO(OH) Composites for Enhanced Photocatalytic Performance
by So Yoon Lee, Tatsuya Matsubara, Daiki Numata and Ai Serizawa
Catalysts 2021, 11(5), 548; https://doi.org/10.3390/catal11050548 - 25 Apr 2021
Cited by 4 | Viewed by 3230
Abstract
Generally, nanoparticles (NPs) are used as photocatalysts, which sometimes results in difficulties in the separation and recycling of photocatalysts from suspensions after their application in water and wastewater treatment, which hinders industrial applications of NPs that are too fine to be removed by [...] Read more.
Generally, nanoparticles (NPs) are used as photocatalysts, which sometimes results in difficulties in the separation and recycling of photocatalysts from suspensions after their application in water and wastewater treatment, which hinders industrial applications of NPs that are too fine to be removed by gravitational settling. This can be solved by using support NPs to overcome these problems. -OH enrich AlO(OH), which is produced by a steam coating process, has been could be used as a possible support, because the -OH groups on the surface can interact with foreign molecules; thus, various composite functional materials can be prepared. Potassium doped titanium oxide NPs, which are produced by a wet corrosion process, namely KTiOxs, have been selected as photocatalysts, because KTiOxs have sufficient K+ ions, thereby expecting the chemical bonding with -OH group from AlO(OH). This study fabricated a novel photocataysis system made by combining KTiOxs as catalysts and AlO(OH) as the catalysts’ support, namely KTiOxs/AlO(OH) composites. The KTiOxs nanowires, obtained from 10 mol/L of a KOH solution treated with Ti and AlO(OH) at 280 °C for 24 h through a steam coating process, yielded the highest surface area and the highest photocatalytic performance. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

Back to TopTop