Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = KIV-2 repeats

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1748 KiB  
Article
Comprehensive Analysis of the Genetic Variation in the LPA Gene from Short-Read Sequencing
by Raphael O. Betschart, Georgios Koliopanos, Paras Garg, Linlin Guo, Massimiliano Rossi, Sebastian Schönherr, Stefan Blankenberg, Raphael Twerenbold, Tanja Zeller and Andreas Ziegler
BioMed 2024, 4(2), 156-170; https://doi.org/10.3390/biomed4020013 - 4 Jun 2024
Viewed by 1965
Abstract
Lipoprotein (a) (Lp(a)) is a risk factor for cardiovascular diseases and mainly regulated by the complex LPA gene. We investigated the types of variation in the LPA gene and their predictive performance on Lp(a) concentration. We determined the Kringle IV-type 2 (KIV-2) copy [...] Read more.
Lipoprotein (a) (Lp(a)) is a risk factor for cardiovascular diseases and mainly regulated by the complex LPA gene. We investigated the types of variation in the LPA gene and their predictive performance on Lp(a) concentration. We determined the Kringle IV-type 2 (KIV-2) copy number (CN) using the DRAGEN LPA Caller (DLC) and a read depth-based CN estimator in 8351 short-read whole genome sequencing samples from the GENESIS-HD study. The pentanucleotide repeat in the promoter region was genotyped with GangSTR and ExpansionHunter. Lp(a) concentration was available in 4861 population-based subjects. Predictive performance on Lp(a) concentration was investigated using random forests. The agreement of the KIV-2 CN between the two specialized callers was high (r = 0.9966; 95% confidence interval [CI] 0.9965–0.9968). Allele-specific KIV-2 CN could be determined in 47.0% of the subjects using the DLC. Lp(a) concentration can be better predicted from allele-specific KIV-2 CN than total KIV-2 CN. Two single nucleotide variants, 4925G>A and rs41272114C>T, further improved prediction. The genetically complex LPA gene can be analyzed with excellent agreement between different callers. The allele-specific KIV-2 CN is more important for predicting Lp(a) concentration than the total KIV-2 CN. Full article
Show Figures

Figure 1

14 pages, 2380 KiB  
Article
Haplotype of the Lipoprotein(a) Gene Variants rs10455872 and rs3798220 Is Associated with Parameters of Coagulation, Fibrinolysis, and Inflammation in Patients after Myocardial Infarction and Highly Elevated Lipoprotein(a) Values
by Sabina Ugovšek, Andreja Rehberger Likozar, Tina Levstek, Katarina Trebušak Podkrajšek, Janja Zupan and Miran Šebeštjen
Int. J. Mol. Sci. 2024, 25(2), 736; https://doi.org/10.3390/ijms25020736 - 6 Jan 2024
Cited by 2 | Viewed by 2935
Abstract
Lipoprotein(a) (Lp(a)) is an independent risk factor for future coronary events. Variants rs10455872 and rs3798220 in the gene encoding Lp(a) are associated with an increased Lp(a) concentration and risk of coronary artery disease. We aimed to determine whether in high-risk coronary artery disease [...] Read more.
Lipoprotein(a) (Lp(a)) is an independent risk factor for future coronary events. Variants rs10455872 and rs3798220 in the gene encoding Lp(a) are associated with an increased Lp(a) concentration and risk of coronary artery disease. We aimed to determine whether in high-risk coronary artery disease patients these two genetic variants and the kringle IV type 2 (KIV-2) repeats are associated with impairment of inflammatory and hemostatic parameters. Patients after myocardial infarction with elevated Lp(a) levels were included. Blood samples underwent biochemical and genetic analyses. In carriers of the AC haplotype, the concentrations of tumor necrosis factor (TNF)-α (4.46 vs. 3.91 ng/L, p = 0.046) and plasminogen activator inhibitor-1 (PAI-1) (p = 0.026) were significantly higher compared to non-carriers. The number of KIV-2 repeats was significantly associated with the concentration of high-sensitivity C-reactive protein (ρ = 0.251, p = 0.038) and overall fibrinolytic potential (r = −0.253, p = 0.038). In our patients, a direct association between the AC haplotype and both TNF-α and PAI-1 levels was observed. Our study shows that the number of KIV-2 repeats not only affects proatherosclerotic and proinflammatory effects of Lp(a) but is also associated with its antifibrinolytic properties. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Pathophysiology of Atherosclerosis 2.0)
Show Figures

Figure 1

15 pages, 1256 KiB  
Article
LPA Genotypes and Haplotypes Are Associated with Lipoprotein(a) Levels but Not Arterial Wall Properties in Stable Post-Coronary Event Patients with Very High Lipoprotein(a) Levels
by Andreja Rehberger Likozar, Aleš Blinc, Katarina Trebušak Podkrajšek and Miran Šebeštjen
J. Cardiovasc. Dev. Dis. 2021, 8(12), 181; https://doi.org/10.3390/jcdd8120181 - 13 Dec 2021
Cited by 9 | Viewed by 3290
Abstract
Lipoprotein(a) [Lp(a)] levels are an independent risk factor for coronary artery disease (CAD). Two single-nucleotide polymorphisms (rs10455872, rs3798220) and number of KIV-2 repeats in the gene encoding Lp(a) (LPA) are associated with Lp(a) and CAD. Our aim was to investigate whether [...] Read more.
Lipoprotein(a) [Lp(a)] levels are an independent risk factor for coronary artery disease (CAD). Two single-nucleotide polymorphisms (rs10455872, rs3798220) and number of KIV-2 repeats in the gene encoding Lp(a) (LPA) are associated with Lp(a) and CAD. Our aim was to investigate whether in patients with stable CAD and high Lp(a) levels these genetic variants are associated with increased Lp(a) and arterial wall properties. Blood samples underwent biochemical and genetic analyses. Ultrasound measurements for the functional and morphological properties of arterial wall were performed. Genotypes of rs10455872 and haplotypes AT and GT showed significant association with Lp(a) levels. Patients with GG showed significantly higher Lp(a) levels compared with those with AG genotype (2180 vs. 1391 mg/L, p = 0.045). Patients with no AT haplotype had significantly higher Lp(a) compared to carriers of one AT haplotype (2158 vs. 1478 mg/L, p = 0.023) or two AT haplotypes (2158 vs. 1487 mg/L, p = 0.044). There were no significant associations with the properties of the arterial wall. Lp(a) levels significantly correlated also with number of KIV-2 repeats (r = −0.601; p < 0.0001). In our patients, these two LPA polymorphisms and number of KIV-2 repeats are associated with Lp(a), but not arterial wall properties. Full article
Show Figures

Figure 1

Back to TopTop