Sign in to use this feature.

Years

Between: -

Subjects

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Küssner–Schwarz

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4789 KiB  
Article
Unsteady Lifting-Line Free-Wake Aerodynamic Modeling for Morphing Wings
by Gregorio Frassoldati, Riccardo Giansante, Giovanni Bernardini and Massimo Gennaretti
Aerospace 2024, 11(9), 745; https://doi.org/10.3390/aerospace11090745 - 11 Sep 2024
Viewed by 1365
Abstract
A time-stepping, lifting-line solution algorithm for the prediction of the unsteady aerodynamics of morphing wings is presented. The velocity induced by the wake vorticity is determined through a free-wake vortex-lattice model, whereas the Küssner and Schwarz’s unsteady airfoil theory is used to evaluate [...] Read more.
A time-stepping, lifting-line solution algorithm for the prediction of the unsteady aerodynamics of morphing wings is presented. The velocity induced by the wake vorticity is determined through a free-wake vortex-lattice model, whereas the Küssner and Schwarz’s unsteady airfoil theory is used to evaluate the sectional loads, and the generalized aerodynamic loads related to body deformation including camber morphing. The wake vorticity released at the trailing edge derives from the bound circulation and is convected downstream as a vortex ring to form the vortex-lattice wake structure. The local bound circulation is obtained by the application of the Kutta–Joukowski theorem extended to unsteady flows. The accuracy of the loads predicted by the proposed solver is assessed by comparison with the predictions obtained by a three-dimensional boundary-element-method solver for potential flows. The two sets of results agree very well for a wide range of reduced frequencies. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop