Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Jinping I-Stage hydropower station

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1998 KB  
Article
Runoff Prediction Method Based on Adaptive Elman Neural Network
by Chenming Li, Lei Zhu, Zhiyao He, Hongmin Gao, Yao Yang, Dan Yao and Xiaoyu Qu
Water 2019, 11(6), 1113; https://doi.org/10.3390/w11061113 - 28 May 2019
Cited by 38 | Viewed by 4515
Abstract
The prediction of medium- and long-term runoff is of great significance to the comprehensive utilization of water resources. Building an adaptive data-driven runoff prediction model by automatic identification of multivariate time series change in runoff forecasting and identifying its influence degree is an [...] Read more.
The prediction of medium- and long-term runoff is of great significance to the comprehensive utilization of water resources. Building an adaptive data-driven runoff prediction model by automatic identification of multivariate time series change in runoff forecasting and identifying its influence degree is an attractive and intricate task. At present, the commonly used screening factor method is correlational analysis; others offer multi-collinearity. If these factors are directly input into the model, the parameters of the model tend to increase, and the excessive redundancy and noise adversely affects the prediction results of the model. On the basis of previous studies on medium- and long-term runoff prediction methods, this paper proposes an Elman Neural Network (ENN) adaptive runoff prediction method based on normalized mutual information (NMI) and kernel principal component analysis (KPCA). In this method, the features of the screening factors are extracted automatically by using the mutual information automatic screening factor, and then input into the Elman Neural Network for training. With less features, the parameters of the Elman Neural Network model can be reduced, and the problem of overfitting of the Elman Neural Network model is effectively alleviated. The method is evaluated by using the annual average runoff data of Jinping hydropower station in Chengdu, China, from 2007 to 2011. The maximum relative error of multiple forecasts was found to be less than 16%, and forecast effect was good. The accuracy of prediction is further improved by averaging the results of multiple forecasts. Full article
(This article belongs to the Special Issue Techniques for Mapping and Assessing Surface Runoff)
Show Figures

Figure 1

Back to TopTop