Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Jeffrey, Maxwell, Oldroyed-B fluids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2977 KiB  
Article
Impact of Thermal Radiation and Heat Source/Sink on MHD Time-Dependent Thin-Film Flow of Oldroyed-B, Maxwell, and Jeffry Fluids over a Stretching Surface
by Abdul Samad Khan, Yufeng Nie and Zahir Shah
Processes 2019, 7(4), 191; https://doi.org/10.3390/pr7040191 - 2 Apr 2019
Cited by 23 | Viewed by 3867
Abstract
In this study paper, we examined the magnetohydrodynamic (MHD) flow of three combined fluids, Maxwell, Jeffry, and Oldroyed- B fluids, with variable heat transmission under the influence of thermal radiation embedded in a permeable medium over a time-dependent stretching sheet. The fluid flow [...] Read more.
In this study paper, we examined the magnetohydrodynamic (MHD) flow of three combined fluids, Maxwell, Jeffry, and Oldroyed- B fluids, with variable heat transmission under the influence of thermal radiation embedded in a permeable medium over a time-dependent stretching sheet. The fluid flow of liquid films was assumed in two dimensions. The fundamental leading equations were changed to a set of differential nonlinear and coupled equations. For this conversion, suitable similarity variables were used. An optimal tactic was used to acquire the solution of the modeled problems. The convergence of the technique has been shown numerically. The obtained analytical and numerical consequences are associated graphically and tabulated. An excellent agreement was obtained between the homotropy analysis method (HAM) and numerical methods. The variation of the skin friction and Nusslet number and their influence on the temperature and concentration profiles were scrutinized. The influence of the thermal radiation, unsteadiness effect, and MHD were the main focus of this study. Furthermore, for conception to be physically demonstrated, the entrenched parameters are discussed graphically in detail along with their effect on liquid film flow. Full article
(This article belongs to the Special Issue Thin Film Processes)
Show Figures

Figure 1

Back to TopTop