Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Jang Bogo Station (JBS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3811 KiB  
Article
Assessment of Polar Ionospheric Observations by VIPIR/Dynasonde at Jang Bogo Station, Antarctica: Part 1—Ionospheric Densities
by Eunsol Kim, Geonhwa Jee, Young-Bae Ham, Nikolay Zabotin, Changsup Lee, Hyuck-Jin Kwon, Junseok Hong, Jeong-Han Kim and Terence Bullett
Remote Sens. 2022, 14(12), 2785; https://doi.org/10.3390/rs14122785 - 10 Jun 2022
Cited by 7 | Viewed by 2437
Abstract
Vertical incidence pulsed ionospheric radar (VIPIR) has been operated to observe the polar ionosphere with Dynasonde analysis software at Jang Bogo Station (JBS), Antarctica, since 2017. The JBS-VIPIR-Dynasonde (JVD) provides ionospheric parameters such as the height profile of electron density with NmF2 and [...] Read more.
Vertical incidence pulsed ionospheric radar (VIPIR) has been operated to observe the polar ionosphere with Dynasonde analysis software at Jang Bogo Station (JBS), Antarctica, since 2017. The JBS-VIPIR-Dynasonde (JVD) provides ionospheric parameters such as the height profile of electron density with NmF2 and hmF2, the ion drift, and the ionospheric tilt in the bottomside ionosphere. The JBS (74.6°S, 164.2°E) is located in the polar cap, cusp, or auroral region depending on the geomagnetic activity and local time. In the present study, an initial assessment of JVD ionospheric densities is attempted by the comparison with GPS TEC measurements which are simultaneously obtained from the GPS receiver at JBS during the solar minimum period from 2017 to 2019. It is found that the JVD NmF2 and bottomside TEC (bTEC) show a generally good correlation with GPS TEC for geomagnetically quiet conditions. However, the bTEC seems to be less correlated with the GPS TEC with slightly larger spreads especially during the daytime and in summer, which seems to be associated with the characteristics of the polar ionosphere such as energetic particle precipitations and large density irregularities. It is also found that the Dynasonde analysis seems to show some limitations to handle these characteristics of the polar ionosphere and needs to be improved to produce more accurate ionospheric density profiles especially during disturbed conditions. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing)
Show Figures

Figure 1

19 pages, 2244 KiB  
Article
Seasonal Variations in the Biochemical Compositions of Phytoplankton and Transparent Exopolymer Particles (TEPs) at Jang Bogo Station (Terra Nova Bay, Ross Sea), 2017–2018
by Sanghoon Park, Jisoo Park, Kyu-Cheul Yoo, Jaeill Yoo, Kwanwoo Kim, Naeun Jo, Hyo-Keun Jang, Jaehong Kim, Jaesoon Kim, Joonmin Kim and Sang-Heon Lee
Water 2021, 13(16), 2173; https://doi.org/10.3390/w13162173 - 8 Aug 2021
Cited by 6 | Viewed by 3119
Abstract
The biochemical composition of particulate organic matter (POM) mainly originates from phytoplankton. Transparent exopolymer particles (TEPs) depend on environmental conditions and play a role in the food web and biogeochemical cycle in marine ecosystems. However, little information on their characteristics in the Southern [...] Read more.
The biochemical composition of particulate organic matter (POM) mainly originates from phytoplankton. Transparent exopolymer particles (TEPs) depend on environmental conditions and play a role in the food web and biogeochemical cycle in marine ecosystems. However, little information on their characteristics in the Southern Ocean is available, particularly in winter. To investigate the seasonal characteristics of POM and TEPSs, seawater samples were collected once every two weeks from November 2017 to October 2018 at Jang Bogo Station (JBS) located on the coast of Terra Nova Bay in the Ross Sea. The total chlorophyll-a (Chl-a) concentrations increased from spring (0.08 ± 0.06 μg L−1) to summer (0.97 ± 0.95 μg L−1) with a highest Chl-a value of 2.15 μg L−1. After sea ice formation, Chl-a rapidly decreased in autumn (0.12 ± 0.10 μg L−1) and winter (0.01 ± 0.01 μg L−1). The low phytoplankton Chl-a measured in this study was related to a short ice-free period in summer. Strong seasonal variations were detected in the concentrations of proteins and lipids (one-way ANOVA test, p < 0.05), whereas no significant difference in carbohydrate concentrations was observed among different seasons (one-way ANOVA test, p > 0.05). The phytoplankton community was mostly composed of diatoms (88.8% ± 11.6%) with a large accumulation of lipids. During the summer, the POM primarily consisted of proteins. The composition being high in lipids and proteins and the high caloric content in summer indicated that the phytoplankton would make a good food source. In winter, the concentrations of proteins decreased sharply. In contrast, relatively stable concentrations of carbohydrates and lipids have been utilized for respiration and long-term energy storage in the survival of phytoplankton. The TEPS values were significantly correlated with variations in the biomass and species of the phytoplankton. Our study site was characterized by dominant diatoms and low Chl-a concentrations, which could have resulted in relatively low TEP concentrations compared to other areas. The average contributions of TEP-C to the total POC were relatively high in autumn (26.9% ± 6.1%), followed by those in summer (21.9% ± 7.1%), winter (13.0% ± 4.2%), and spring (9.8% ± 3.1%). Full article
(This article belongs to the Special Issue Marine Nitrogen Fixation and Phytoplankton Ecology)
Show Figures

Figure 1

Back to TopTop