Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = IP65 anemometer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2138 KB  
Article
Evaluation of a Cyber-Physical System with Fuzzy Control for Efficiency Optimization in Rotary Dryers: Real-Time Multivariate Monitoring of Humidity, Temperature, Air Velocity and Mass Loss
by Juan Manuel Tabares-Martinez, Adriana Guzmán-López, Micael Gerardo Bravo-Sánchez, Salvador Martín Aceves, Yaquelin Verenice Pantoja-Pacheco and Juan Pablo Aguilera-Álvarez
Technologies 2025, 13(9), 424; https://doi.org/10.3390/technologies13090424 - 21 Sep 2025
Viewed by 917
Abstract
Precise control and monitoring systems are essential for efficient energy consumption in food dehydration. This study develops an applied cyber-physical control system to optimize food dehydration in rotary dryers, integrating fuzzy control algorithms through data acquisition. The system architecture utilizes DHT22 transducers for [...] Read more.
Precise control and monitoring systems are essential for efficient energy consumption in food dehydration. This study develops an applied cyber-physical control system to optimize food dehydration in rotary dryers, integrating fuzzy control algorithms through data acquisition. The system architecture utilizes DHT22 transducers for temperature monitoring, a DHT11 for humidity measurement, an IP65 anemometer for dryer wind speed detection, and a load cell weight tracking system, all connected to an Arduino Mega 2560 R3 microcontroller implementing the integrated fuzzy logic library. Experimental evaluations were performed with different carrot loads (1.5, 2.5, and 3.5 kg), demonstrating optimal performance at the initial load of 3.5 kg with an energy consumption of 11,589 kJ for 9.33 h, achieving a final moisture reduction of 10%. The 1.5 kg sample showed optimal dehydration kinetics at an average dryer hot air velocity of 1.5 m/s, while maximum efficiency (86%) was achieved with the 3.5 kg load, compared to 30% and 17% for the smaller batches. These results validate the integration of cyber-physical systems to optimize the dehydration rate (0.301 kg/h), thereby ensuring product quality in agro-industrial drying applications. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Graphical abstract

Back to TopTop