Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Hutton Sandstone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 9636 KB  
Article
Conceptual Modelling of Two Large-Scale Mine Water Geothermal Energy Schemes: Felling, Gateshead, UK
by David Banks, Jonathan Steven, Adam Black and John Naismith
Int. J. Environ. Res. Public Health 2022, 19(3), 1643; https://doi.org/10.3390/ijerph19031643 - 31 Jan 2022
Cited by 24 | Viewed by 5736
Abstract
A conceptual model is presented of two MW-scale low enthalpy mine water geothermal heat pump schemes that are being developed in Tyneside, UK. The Abbotsford Road scheme (54.955° N 1.556° W) is operating (as of May 2021) at 20–30 L/s, abstracting groundwater (and [...] Read more.
A conceptual model is presented of two MW-scale low enthalpy mine water geothermal heat pump schemes that are being developed in Tyneside, UK. The Abbotsford Road scheme (54.955° N 1.556° W) is operating (as of May 2021) at 20–30 L/s, abstracting groundwater (and heat) from an unmined Coal Measures Upper Aquifer System (UAS) and reinjecting to the deeper High Main Aquifer System (HMAS), associated with the High Main (E) coal workings and the overlying High Main Post sandstone. A similar scheme, 700 m away at Nest Road (54.959° N 1.564° W), abstracts at 40 L/s from the HMAS, recovers heat from the mine water and reinjects the thermally spent water to deeper workings associated with the Hutton (L), Harvey-Beaumont (N) (and possibly other) coal seams, termed the Deep Mined Aquifer System (DMAS). The three aquifer systems are vertically discontinuous and possess different hydraulic (storage, transmissivity and continuity) properties that would have been near-impossible to predict in advance of drilling. At the sites, 10 boreholes were drilled to obtain five usable production/reinjection boreholes. Development of mine water geothermal energy schemes thus carries a significant project risk, and also a potential ongoing maintenance burden related to iron hydroxide scaling. These do not preclude mine water geothermal as a useful low carbon heating and cooling technology, but the involvement of skilled hydrogeologists, hydrochemists, mining and groundwater engineers is a pre-requisite. Full article
Show Figures

Graphical abstract

19 pages, 8848 KB  
Article
Experimental and Modelled Reactions of CO2 and SO2 with Core from a Low Salinity Aquifer Overlying a Target CO2 Storage Complex
by Julie K. Pearce, Grant K.W. Dawson, Silvano Sommacal and Suzanne D. Golding
Geosciences 2019, 9(12), 513; https://doi.org/10.3390/geosciences9120513 - 12 Dec 2019
Cited by 11 | Viewed by 3906
Abstract
CO2-induced reactions in low salinity aquifers overlying CO2 storage sites are of interest to understand potential reactions or impacts in the possible case of a leak. Previous investigations of overlying aquifers in the context of CO2 storage have focused [...] Read more.
CO2-induced reactions in low salinity aquifers overlying CO2 storage sites are of interest to understand potential reactions or impacts in the possible case of a leak. Previous investigations of overlying aquifers in the context of CO2 storage have focused on pure CO2 streams, however captured industrial CO2 streams may contain ancillary gases, including SO2, O2, NOx, H2S, N2, etc., some of which may be more reactive than CO2 when dissolved in formation water. Eight drill cores from two wells in a low salinity sandstone aquifer that overlies a target CO2 storage complex are characterised for porosity (helium, mercury injection, or micro CT), permeability, and mineral content. The eight Hutton Sandstone cores are variable with porosities of 5.2–19.6%, including carbonaceous mudstones, calcite cemented sandstones, and quartz rich sandstones, common lithologies that may be found generally in overlying aquifers of CO2 storage sites. A chlorite rich sandstone was experimentally reacted with CO2 and low concentrations of SO2 to investigate the potential reactions and possible mineral trapping in the unlikely event of a leak. Micro CT characterisation before and after the reaction indicated no significant change in porosity, although some fines movement was observed that could affect permeability. Dissolved concentrations of Fe, Ca, Mn, Cr, Mg, Rb, Li, Zn, etc., increased during the reaction, including from dissolution of chlorite and trace amounts of ankerite. After ~40 days dissolved concentrations including Fe, Zn, Al, Ba, As and Cr decreased. Chlorite was corroded, and Fe-rich precipitates mainly Fe-Cr oxides were observed to be precipitated on rock surfaces after experimental reaction. Concentrations of Rb and Li increased steadily and deserve further investigation as potential monitoring indicators for a leak. The reaction of chlorite rich sandstone with CO2 and SO2 was geochemically modelled over 10 years, with mainly chlorite alteration to siderite mineral trapping 1.55 kg/m3 of CO2 and removing dissolved Fe from solution. Kaolinite and chalcedony precipitation was also predicted, with minor pyrite precipitation trapping SO2, however no changes to porosity were predicted. Full article
(This article belongs to the Special Issue Geochemical and associated Changes with Gas-Water-Rock Reactions)
Show Figures

Graphical abstract

Back to TopTop