Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Huangqihai Lake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4282 KiB  
Article
Vegetation Determines Lake Sediment Carbon Accumulation during Holocene in the Forest–Steppe Ecotone in Northern China
by Qian Hao, Shilei Yang, Zhaoliang Song, Zhengang Wang, Changxun Yu and Hailong Wang
Forests 2021, 12(6), 696; https://doi.org/10.3390/f12060696 - 28 May 2021
Cited by 7 | Viewed by 2988
Abstract
To understand the past carbon accumulation of forest–steppe ecotone and to identify the main drivers of the long-term carbon dynamics, we selected Huangqihai Lake and analyzed the sediment records. We measured the organic carbon content (TOC; %) of sedimentary samples and quantified the [...] Read more.
To understand the past carbon accumulation of forest–steppe ecotone and to identify the main drivers of the long-term carbon dynamics, we selected Huangqihai Lake and analyzed the sediment records. We measured the organic carbon content (TOC; %) of sedimentary samples and quantified the carbon accumulation rate (CAR; g C m−2 yr−1). Furthermore, the climate, soil erosion, and vegetation development of the past 6800 years were reconstructed using physicochemical parameters and pollen records. Human activities were also obtained from a 2200-year history record. Our results showed that the CAR was high during 5800~4100 cal yr BP (40~60 g C m−2 yr−1), which is mainly attributed to the high sediment accumulation rate (SAR) during this period. Pearson’s correlation, redundancy analysis and hierarchical variation partitioning analyses suggested that the CAR was influenced by the SAR and TOC, while vegetation dynamics (broadleaved tree percentage and vegetation coverage) and local soil erosion were the main drivers of the TOC and SAR. Especially when the vegetation was dominated by broadleaved forests, the CAR was significantly high due to the high gross primary productivity and carbon density of forest compared with steppe. Our study highlights the direct influence of local vegetation and soil erosion on the CAR, whereas climate might influence indirectly by changing local vegetation and soil conditions. Moreover, our results showed that human activities had positive influences on the carbon accumulation dynamics in this region since 2200 cal yr BP by influencing the SAR. Full article
Show Figures

Figure 1

21 pages, 8515 KiB  
Article
External Groundwater Alleviates the Degradation of Closed Lakes in Semi-Arid Regions of China
by Jiaqi Chen, Jiming Lv, Ning Li, Qingwei Wang and Jian Wang
Remote Sens. 2020, 12(1), 45; https://doi.org/10.3390/rs12010045 - 20 Dec 2019
Cited by 28 | Viewed by 3603
Abstract
There are a large number of lakes with beaded distribution in the semi-arid areas of the Inner Mongolian Plateau, and some of them have degraded or even disappeared during the past three decades. We studied the reasons of the disappearance of these lakes [...] Read more.
There are a large number of lakes with beaded distribution in the semi-arid areas of the Inner Mongolian Plateau, and some of them have degraded or even disappeared during the past three decades. We studied the reasons of the disappearance of these lakes by determining the way of replenishment of these lakes and the impact of the natural-social environment of the basin, with the aim of saving these gradually disappearing lakes. Based on remote sensing image and hydrological analysis, this paper studied the recharge of Daihai Lake and Huangqihai Lake. The deep learning method was used to establish the time-series of lake evolution. The same method was combined with the innovative woodland and farmland extraction method to set up the time-series of ground classification composition in the basins. Using relevant survey data, combined with soil water infiltration test, water chemical, and isotopic signature analysis of various water bodies, we found that the Daihai Lake area is the largest in dry season and the smallest in rainy season and the other lake is not satisfied with this phenomenon. In addition, we calculated the specific recharge and consumption of the study basin. These experiments indicated that the exogenous groundwater is recharged directly through the faults at the bottom of Daihai Lake, while the exogenous groundwater is recharged in Huangqihai Lake through rivers indirectly. Large-scale exploitation of groundwater for agricultural irrigation and industrial production is the main cause of lake degradation. Reducing the extraction of groundwater for agricultural irrigation is an important measure to restore lake ecology. Full article
(This article belongs to the Special Issue Remote Sensing of the Terrestrial Hydrologic Cycle)
Show Figures

Graphical abstract

Back to TopTop