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Abstract: To understand the past carbon accumulation of forest–steppe ecotone and to identify
the main drivers of the long-term carbon dynamics, we selected Huangqihai Lake and analyzed
the sediment records. We measured the organic carbon content (TOC; %) of sedimentary samples
and quantified the carbon accumulation rate (CAR; g C m−2 yr−1). Furthermore, the climate, soil
erosion, and vegetation development of the past 6800 years were reconstructed using physicochemical
parameters and pollen records. Human activities were also obtained from a 2200-year history record.
Our results showed that the CAR was high during 5800~4100 cal yr BP (40~60 g C m−2 yr−1), which
is mainly attributed to the high sediment accumulation rate (SAR) during this period. Pearson’s
correlation, redundancy analysis and hierarchical variation partitioning analyses suggested that the
CAR was influenced by the SAR and TOC, while vegetation dynamics (broadleaved tree percentage
and vegetation coverage) and local soil erosion were the main drivers of the TOC and SAR. Especially
when the vegetation was dominated by broadleaved forests, the CAR was significantly high due to
the high gross primary productivity and carbon density of forest compared with steppe. Our study
highlights the direct influence of local vegetation and soil erosion on the CAR, whereas climate might
influence indirectly by changing local vegetation and soil conditions. Moreover, our results showed
that human activities had positive influences on the carbon accumulation dynamics in this region
since 2200 cal yr BP by influencing the SAR.

Keywords: carbon accumulation rate (CAR); Huangqihai Lake; climate change; vegetation coverage;
broadleaved forest; Holocene

1. Introduction

Global climate change caused by the rapid emission of carbon dioxide (CO2) and
other greenhouse gases since the Industrial Revolution has attracted increasing public
attention [1]. Although lakes cover only 2% of the Earth’s surface, they act as an im-
portant sink for carbonaceous matter, which is only partly mineralized in the water col-
umn [2–4], and thus play a significant role in regulating the global carbon cycle [5–7].
For instance, it is estimated that during the Holocene, lakes annually buried 42 Tg or-
ganic carbon (OC), which is more than two-fifths of the amount of organic carbon buried
in the ocean (100 Tg OC yr−1) [8]. Furthermore, Dong et al. [9] suggested that lakes are
3.4 times more effective than terrestrial ecosystems in C burial. The lakes in China
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show high carbon sequestration potential (1.98 Tg OC yr−1) [10] and have buried in to-
tal about 8.0 ± 1.0 Pg OC since 12,000 cal yr BP, with an average carbon accumulation
rate (CAR) of 7.7 ± 1.4 g OC m−2 yr−1 [11]. Especially during the mid-Holocene and late
Holocene, the carbon storage was relatively high because of the changes of CARs and
lake sizes [12,13]. Although many studies investigated carbon burial in different Holocene
lakes in China [14–17], few of them attempted to provide detailed information on carbon
deposition as well as its potential environmental and anthropogenic factors, such as the
climate, vegetation dynamics and human activities [9,11].

The carbon dynamics in the forest–steppe ecotone of northern China could well
provide a reference for the study of the influences of environmental changes, especially
vegetation change. The vegetation in this region is sensitive to climate change because of
its location at the margin of the Asian monsoon region [18–20]. Previous studies on lake
sediments have demonstrated that the climate of eastern Inner Mongolia was relatively
wet before 5000 cal yr BP, while climate drying afterwards first led to the replacement of
broadleaved forest by pine forest [21,22]. The replacement of pine forest by steppe was
primarily driven by climate drying during the late Holocene [19,23]. However, it is still not
clear how these vegetation changes (boreal forest–broadleaved forest–steppe) influenced
the CAR. Thus, we intend to understand the correlation between vegetation succession and
carbon accumulation. Besides, global temperatures during the mid-Holocene were at least
as warm as today [24], and it is critical to illustrate how climate affects burial efficiency in
the context of anthropogenic global warming [3]. Therefore, understanding the processes
of carbon accumulation and its drivers in these lakes may provide useful insights into the
carbon dynamics of forest–steppe ecotone in the future [4,25,26].

This study focuses on carbon dynamics in the sediments of the Huangqihai Lake in
forest–steppe ecotone of northern China and investigates their possible influencing factors,
especially the vegetation change during the Holocene. This information will help us better
predict how carbon dynamics in lake sediments will respond to future climate change,
vegetation succession and human activities.

2. Study Areas and Methods
2.1. Study Site

Huangqihai Lake (40◦47′–40◦54′ N, 113◦05′–113◦23′ E) lies at the forest–steppe ecotone
of southeastern Inner Mongolian Plateau (Figure 1a,b). The lake has a maximum length of
20 km, and a maximum width of 9 km, with a maximum surface area of about 110 km2 [20].
It has a drainage area of 4510 km2, with an average altitude of 1268 m [27]. The lake is
mainly supplied by surface runoff, with 19 rivers flowing into the lake [20,27].
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The study region, located between the semi-humid and semi-arid areas, is very sen-
sitive to the variation of East Asian summer monsoon (EASM) [20]. The mean annual tem-
perature (MAT) in this area is about 4.5 °C. The mean annual precipitation (MAP) and 
evaporation (MAE) are 372.2 mm and 1930 mm, respectively. About two-thirds of annual 
rainfall occurs during June to August [20,25,29]. The lake water area has greatly varied 
due to climate change and human activities in recent decades. It had even totally desic-
cated in 2008 [30]. 

2.2. Methods 
2.2.1. Sampling 

In January 2012, an 820 cm continuous sediment column (location 40°50′ N, 113°17′ 
E) was collected from the central part of the lake using a piston corer (UWITEC) [20]. The 
lithology and grain size compositions of the overlap layers showed that the two sections 
matched very well although cored by different sampling methods. 

2.2.2. Chronological Model and Sediment Accumulation Rate (SAR) 
According to lithological characteristics, 15 bulk sediment samples were collected 

throughout the sediment column and dated by accelerated mass spectrometry (AMS) in 
the AMS Laboratory of Peking University [20]. We reconstructed a Bayesian depth–age 
model with Bacon (Figure 2) [31,32]. As the measured age of the 0 cm for the core was 
1511 cal yr BP (before 1950), we suggested 1573 years as a possible reservoir effect (sum 
of 1511 years and the difference between 2012 and 1950) assuming that the lake surface 
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Figure 1. Location of Huangqihai Lake at the regional and local scales. (a) Map of China showing the location of the study
region, the East Asian Monsoon margin and the location of Huangqihai Lake (HQH), other lakes mentioned (Anguli Nuur,
AGLN; Daihai, DH; Qigai Nuur, QG; Yanhaizi Lake, YHZ) and Dongge, Sanbao and Hulu Cave (rectangle area as shown in
detail in b); (b) DEM image of the study area showing the Huangqihai Lake and other lakes. The CAR dynamics for these
five lakes during the Holocene are shown as a bar chart (g C m−2 yr−1); (c) carbon density of three ecosystem types in the
study region [28]. All the legends are shown at the bottom right.

The study region, located between the semi-humid and semi-arid areas, is very sen-
sitive to the variation of East Asian summer monsoon (EASM) [20]. The mean annual
temperature (MAT) in this area is about 4.5 ◦C. The mean annual precipitation (MAP) and
evaporation (MAE) are 372.2 mm and 1930 mm, respectively. About two-thirds of annual
rainfall occurs during June to August [20,25,29]. The lake water area has greatly varied due
to climate change and human activities in recent decades. It had even totally desiccated in
2008 [30].

2.2. Methods
2.2.1. Sampling

In January 2012, an 820 cm continuous sediment column (location 40◦50′ N, 113◦17′ E)
was collected from the central part of the lake using a piston corer (UWITEC) [20]. The
lithology and grain size compositions of the overlap layers showed that the two sections
matched very well although cored by different sampling methods.

2.2.2. Chronological Model and Sediment Accumulation Rate (SAR)

According to lithological characteristics, 15 bulk sediment samples were collected
throughout the sediment column and dated by accelerated mass spectrometry (AMS) in the
AMS Laboratory of Peking University [20]. We reconstructed a Bayesian depth–age model
with Bacon (Figure 2) [31,32]. As the measured age of the 0 cm for the core was 1511 cal yr
BP (before 1950), we suggested 1573 years as a possible reservoir effect (sum of 1511 years
and the difference between 2012 and 1950) assuming that the lake surface was the drilling
age (2012 AD). 137Cs and 210Pb were measured in the Chinese Academy of Agricultural
Sciences. Though the results of 137Cs and 210Pb did not illustrate the accurate year because
of limited sample numbers (Table S1), the results suggested that the 0~10 cm was deposited
during the last 100 years and the lake surface did not have obvious denudation.
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Based on the depth–age model, sediment accumulation rate (SAR; mm yr−1) for the
sediment column was calculated (Equation (1)):

SAR = Depth range/Age range. (1)

2.2.3. Carbon Accumulation Rate (CAR)

Total carbon (TC) and total nitrogen (TN) were measured using an Elementar Vario
EL (Elementar Analysensysteme GmbH, Hanau, Germany). To obtain TOC (total organic
carbon), total inorganic carbon (TIC) was derived from the change of sample weight after
adding sufficient 2 M HCl. The TOC was calculated by subtracting TIC from TC [20]. The
organic carbon accumulation rate (CAR; g C m−2 yr−1) was calculated using TOC (%), dry
bulk density (DBD; g cm−3) and SAR (mm yr−1) (Equation (2)) [11]:

CAR = (SAR × TOC × DBD) × 10. (2)

The DBD was calculated with TOC based on the following formula (Equations (3) and
(4)) [33]:

When TOC > 6%, DBD = 1.665 × (TOC)−0.887; (3)

When TOC ≤ 6%, DBD = 1.776 − 0.363 × ln(10 × TOC). (4)

Since TOC contents in the sediment of Huangqihai Lake are all below 6%, the DBD
was calculated using Equation (4).

2.2.4. Proxies of Climate, Vegetation and Soil Changes

Lakes not only bury OC but also mineralize considerable amounts of OC [6,34].
Thus, the OC burial efficiency in lakes and the CAR in lake sediments are controlled by
the balance between OC input and decay loss that can be influenced by many factors,
including environmental variables (e.g., precipitation, temperature, and soil), vegetation
(aquatic plant and surrounding terrestrial vegetation), and lake properties (e.g., lake size,
lake shape, and hydrological changes) [3,35,36]. To illustrate the main factors influencing
the carbon dynamics, we collected parameters to denote the climate change, soil erosion,
vegetation dynamics and human activities as described below.
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We used the δ18O of Dongge Cave, Hulu Cave, and Sanbao Cave to indicate the
climate change, especially the precipitation change (Figure 1a) [37–39]. Liu et al. [40]
found that the rainfall in northern China and the δ18O in Dongge Cave were significantly
correlated. At the same time, we collected the temperature data, which was synthetically
reconstructed based on 45 previous references and records, including pollen, archaeology
and plant fossils [41]. The history records, such as human population and grain yield grade,
were used to denote human activities [42].

The vegetation dynamics during the past 6833 years were revealed by pollen assembly.
Here, we report the pollen percentages of total arboreal plants (AP), including coniferous
trees and broadleaved trees. The ratio of AP to NAP (AP/NAP) was used to represent
the changes between forest and steppe [20,43,44]. The pollen percentage of coniferous and
broadleaved trees could be used to indicate the dominating forest type. The vegetation
coverage was displayed by pollen concentration assuming pollen has not been lost due to
decay because the pollen grains did not show obvious corrosion.

The grain size and magnetic susceptibility of sediment samples could be used as
indicators of soil erosion [45,46]. The grain size of sediment samples was measured by a
previous study using a Malvern Master-size 2000 (Malvern Instruments Ltd., Worcester-
shire, United Kingdom) [20]. Grain size distribution (mass%) is presented as the cumulative
percentages of three size fractions: clay (<2 µm), silt (2~63 µm) and sand (>63 µm). We
used the sand/non-sand ratio and mean grain size (D (3, 2)) to indicate the soil erosion
intensity. Low- and high-frequency magnetic susceptibility (χlf and χhf) were measured at
0.47 kHz and 4.7 kHz using a Bartington MS2 Meter and a MS2B Dual Frequency Sensor
(Wang et al., unpublished data). Although the interpretation about magnetic susceptibility
was not consistent, we used it as an indicator of soil erosion, mainly caused by the high
precipitation (surface runoff) in our study region [47,48].

Besides, we also measured the element contents of sediment from Huangqihai Lake,
by X-ray fluorescence spectroscopy (ADVANT XP+), including K2O, Na2O, CaO, MgO,
Fe2O3, MnO, TiO2 and Al2O3 (Figure S1). The element ratios were calculated to indicate
the chemical weathering [49,50], such as (CaO + MgO + Na2O)/TiO2, (CaO + MgO +
Na2O)/Al2O3, Na/Al, Ca/Al and Mn/Al (Figure S2). Because of the close relationships of
these ratios, we just used (CaO + MgO + Na2O)/TiO2 and Na/Al as indicators.

To compare with other lakes in this region, we also collected the chronological model,
TOC and pollen records of the other four lakes from published papers (Anguli Nuur,
Daihai, Qigai Nuur and Yanhaizi Lake; Figure 1a). As other environmental parameters,
such as grain size or magnetic susceptibility, were not tested or shown in these papers, we
only collected their pollen records for a comparison [21,51–53]. The depth–age models of
these lakes were also reconstructed by Bacon [32].

2.2.5. Data Analysis

The means of all these parameters mentioned above and CAR were calculated at
200-year intervals. The correlations among possible influencing factors (precipitation,
temperature, vegetation, soil erosion and human activities) were examined using Pearson’s
correlation coefficients, which made clear the relationships among these influencing factors.
The correlations between these possible influencing factors and CAR were also calculated
using Pearson’s correlation coefficients. Then, we removed the factors with no significant
relationships with CAR and performed redundancy analysis (RDA) and hierarchical vari-
ation partitioning (HP) in R with the data of 200-year intervals to find the main driving
factors. These methods could determine the independent contribution of each factor and
partly effectively solve the problem of multicollinearity. Besides, all these original data
were calculated in R with the BINCOR package to ignore time series autocorrelation [54].
This method is also available for such uneven time series as our original data. For the other
four lakes, SAR, CAR and vegetation parameters were calculated at 1000-year intervals
since the dating and sampling resolutions were relatively low compared with those of
Huangqihai Lake (Figure 1b).
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3. Results
3.1. Temporal Variations of the SAR and CAR

Generally, CAR has displayed a significant temporal variability during the past
6833 years (Figure 3). Since SAR varied more significantly than TOC, the temporal variation
of CAR overall followed that of SAR. The values of CAR and SAR were low from 6833 to
about 5800 cal yr BP, and thereafter increased greatly (>1.2 mm yr−1 and >15 g C m−2 yr−1,
respectively) and remained at high levels until 4100 cal yr BP with great variations, after
which the values decreased sharply from 4.07 to 1.00 mm yr−1 and from about 64.3 to
30.3 g C m−2 yr−1, respectively. During the period from 4100 to 3100 cal yr BP, the CAR
still kept relatively high at about 30 g C m−2 yr−1. During the period from 2100 cal yr BP to
the present, the TIC, TOC, and TN contents decreased compared with those of the previous
period, but these drops were smaller compared with SAR and CAR, which showed a sharp
decline. After 400 cal yr BP, the CAR increased a little due to the increase of TOC.
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total nitrogen (TN), the ratio of TOC and TN (C/N), the calculated dry bulk density (DBD), sediment accumulation rate
(SAR), and carbon accumulation rate (CAR) in Huangqihai Lake. The TOC and TN values were obtained from [20].

3.2. Contributions of the Abiotic and Biotic Factors to CAR Dynamics

Among these selected climate/environmental variables (Table 1), temperature anomaly
and precipitation indicated by δ18O of caves had a close relationship (p < 0.01), and these
two climate factors were both related with broadleaved tree percentage and element ratios.
Pollen concentration, as another vegetation indicator, was also correlated with broadleaved
tree percentage. These two vegetation indicators showed significant relationships with
AP/NAP and coniferous tree percentage (p < 0.01), but the correlation was negative. Al-
though the three soil erosion proxies (grain size, magnetic susceptibility and element ratio)
had some relevance, they did not show similar correlations with climate or vegetation
proxies. For example, temperature had negative relationships with sand/non-sand, but
positive relationships with element ratios. The δ18O only showed positive relationships
with element ratios, but not with grain size and magnetic susceptibility.
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Table 1. Correlation coefficients (R) among selected climate/environmental variables. These original data were obtained
from the reference list in Table 2.

Variables Temperature δ18O of
Caves

Sand/Non-
Sand

Mean
Grain Size

Magnetic
Susceptibility

Element
Ratio Na/Al AP/NAP Pollen Con-

centration

Broadleaved
Tree Pollen
Percentage

δ18O of caves −0.67 **
Sand/non-sand −0.72 ** 0.16
Mean grain size 0.10 −0.22 0.07

Magnetic
susceptibility −0.39 * 0.07 0.50 ** −0.23

Element ratio 0.66 ** −0.45 ** −0.58 ** 0.27 −0.80 **
Na/Al 0.29 −0.14 −0.38 * 0.28 −0.78 ** 0.82 **

AP/NAP −0.16 0.25 −0.07 −0.09 0.07 −0.12 −0.13
Pollen

concentration 0.44 ** −0.03 −0.38 * −0.00 −0.49 ** 0.42 * 0.44 * −0.48 **

Broadleaved
tree pollen
percentage

0.79 ** −0.78 ** −0.38 * 0.24 −0.47 ** 0.64 ** 0.41 * −0.51 ** 0.46 **

Coniferous tree
pollen

percentage
−0.07 0.19 −0.18 0.11 −0.06 0.05 0.01 0.77 ** −0.55 ** −0.39 *

* p < 0.05; ** p < 0.01.

Based on Pearson’s relationships (Table 2), climate, soil erosion, and vegetation all
had significant relationships with TOC, SAR, and CAR, especially the pollen concentration,
broadleaved tree percentages, element ratio ((CaO + MgO + Na2O)/TiO2) and magnetic
susceptibility (p < 0.01; Table 2; Figure 4). However, the RDA indicated that the broadleaved
tree percentages, pollen concentration and mean grain size all had significant influences on
TOC, SAR and CAR (Figure 5a,b), which contributed 9%, 10.8%, and 7.4%, respectively.
According to the HP results, the major influencing factors for TOC, SAR, and CAR were
mainly pollen concentration, broadleaved tree percentage, and mean grain size, too, in
which the independent effects were all beyond 15%, except the mean grain size to TOC
(Figure 5c). Generally, the climate and vegetation parameters had highly independent
effects on TOC, while soil erosion parameters had highly independent effects on SAR.
Besides, the BINCOR results indicated that only the pollen concentration had a significant
relationship with CAR (p < 0.01; Figure S3).

Table 2. Correlation coefficients (R) of Huangqihai Lake sediment TOC, SAR, and CAR with climate/environmental variables.

Variables TOC SAR CAR Reference

Temperature (China) 0.69 ** 0.40 * 0.45 ** [41]
Precipitation (δ18O of caves) −0.54 ** −0.21 −0.27 [37–39]

Sand/non-sand (Huangqihai) −0.38 * −0.3 −0.31 [20]
Mean grain size (Huangqihai) 0.29 0.34 * 0.37 * This study

Magnetic susceptibility (Huangqihai) −0.52 ** −0.50 ** −0.51 ** Wang et al. unpublished
Element ratio (Huangqihai) 0.65 ** 0.50 ** 0.54 ** This study

Na/Al (Huangqihai) 0.46 ** 0.42 * 0.44 ** This study
AP/NAP (Huangqihai) −0.56 ** −0.40 * −0.40 * [20]

Pollen concentration (Huangqihai) 0.69 ** 0.52 ** 0.54 ** [20]
Broadleaved tree pollen percentage (Huangqihai) 0.84 ** 0.57 ** 0.61 ** [20]
Coniferous tree pollen percentage (Huangqihai) −0.54 ** −0.32 −0.34 [20]

Human activity (Population number) 0.45 0.67 * 0.79 ** [42]

* p < 0.05; ** p < 0.01.
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(p < 0.05 or 0.01) listed in Table 2. A total of three parameters (broadleaved tree pollen percentages, pollen concentration,
and mean grain size of Huangqihai Lake) made the most contributions to TOC, SAR, and CAR. The contributions (%) are
shown beside the parameter names in (b).
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4. Discussion

This study showed that local vegetation and soil erosion were important determinants
for burial carbon accumulation, as reflected by the significant relationships of vegetation
parameters and soil mean grain size with TOC, CAR, and SAR (Table 2; Figures 4 and 5).
In addition, SAR was the most significant factor in determining the CAR trends compared
with TOC (Figures 3 and 5a). The SAR is mainly influenced by the mass of input matter.
When the surrounding vegetation has high primary productivity, the input of matter and
OC would be high [6]. The significant increment in CAR from about 6000 to 5000 cal yr BP
was consistent with the increased arboreal ratios and grain size (Figure 6). When the forest
dominated during about 5800~2700 cal yr BP, the CAR was high because of significantly
higher soil organic carbon densities and gross primary productivity (GPP) in the forest,
especially the broadleaved forest, than those in the steppe [15,28,55] (Figure 1c), which were
closely related with TOC and SAR. The CAR dynamics was consistent with the broadleaved
tree and vegetation coverage (Figures 4 and 6), though it did not display significant
correlation with AP/NAP or coniferous tree percentage (Table 2), which was caused by the
sudden increase of Pinus pollen percentage during 2400–600 cal yr BP [20] (Figure 6). The
AP was high during this period, but the tree cover was extremely low with low input TOC.
At the same time, enhanced soil erosion caused by high precipitation could lead to high
SAR values during 5800~2700 cal yr BP (Figure 4). During the high vegetation coverage and
tree percentage period, the river and lake levels are relatively high (always referred from
pollen records; [56,57]), which means that the river could bring more TOC into the lake.
This kind of hydrological effect should not be overlooked. For example, the Quistococha
Lake under the strong influence of the Amazon River had the highest sedimentation rates
(mean 0.5 cm yr−1) between about 6100 and 4900 cal yr BP [58]. The sharp decline in CAR
since about 2100 cal yr BP was also consistent with the decreased broadleaved tree ratio
and vegetation coverage (Figure 6). Therefore, vegetation and soil erosion are the direct
factors in determining sediment carbon dynamics in Huangqihai Lake.
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Similar to other lakes in the forest—steppe ecotone, such as Daihai and Anguli Nuur
(Figure 1b), the high CAR in Huangqihai Lake appeared in the mid-Holocene characterized
by relatively flourishing vegetation (dominated by forest) as indicated by the high pollen
densities and percentage of trees [19–21,23,52]. However, sediment accumulation is not
uniform in space [6] and there still exist some lakes with relatively low CAR in the mid-
Holocene compared with the early and late Holocene (e.g., Qigai Nuur, Yanhaizi; [51,53];
Figure 1). These lakes are all distributed in the west of Huangqihai Lake with high evap-
oration in the mid-Holocene, leading to relatively low vegetation coverage [53,59–61].
This also suggests that vegetation is the direct factor influencing CAR, and productiv-
ity might be more important than decomposition in long-term carbon accumulation [2].
Compared with the forest–steppe ecotone of the other regions, the TOC is also high dur-
ing 6000~4000 cal yr BP along with high AP percentages in southern Siberia, while the
CAR reached a peak during the early Holocene for the melting permafrost and retreating
glaciers [4], which did not happen in our study region. In Europe, the CAR also increased
between 5000 and 2000 cal yr BP [5].

The results of this study suggested that CAR in the forest–steppe ecotone had low
correlation with climate change as indicated by the RDA and HP (Figure 5). The changing
trends of climate parameters also did not show similar trends with CAR (Figure 4). As
mentioned above, the surrounding vegetation was the direct factor influencing the CAR
(Figure 5). At the same time, the vegetation change of Huangqihai did not respond
to climate change timely because of the resistance of vegetation [20]. From the typical
sedimentary core of Huangqihai, although the overall forest was replaced by steppe with
climate drying, previous research found two other response patterns: increasing shrubs
(3300~2300 cal yr BP) and low forest coverage (2300~600 cal yr BP) (Figure 6), implying that
the climate determines the CAR, mainly through affecting vegetation type and coverage. In
the future, the expansion of drylands [62] might lead to vegetation change and this would
reduce carbon sequestration in the study area.

Human activities, such as lake eutrophication, land-use change and agriculture, en-
hance OC burial in lakes [7,63]. Human activities show close positive relationships with
CAR in our study by Pearson’s correlation (Table 2), demonstrating that human activities
have positive effects on CAR in lake sediments. The BINCOR result did not show the same
correlation, which might be caused by the low data resolution of our records. Besides,
previous studies suggested that agriculture has enhanced CAR only since about 200 years
ago in our study area [19,64,65]. In summary, we conclude that vegetation and soil erosion
are the most important drivers of carbon accumulation rates over millennial timescales.

However, it is still hard to distinguish the carbon sources totally based on our data.
The TOC in the lake sediments is a mixture of terrestrial and aquatic sources. Though many
works try to distinguish these two sources by measuring C, N, and δ13C and constructing
models [66–68], we are unable to estimate the relative contribution of terrestrial and aquatic
sources in our study by C/N. However, the main source might change from arboreal plants
to non-arboreal plants or aquatic plants because of the sharp decrease of C/N since about
1000 cal yr BP (Figure 3). The C/N of non-arboreal plants and aquatic plants was relatively
lower than that of terrestrial plants [67]. This shift also suggested that the vegetation type
is important for carbon dynamics of lake sediments.

5. Conclusions

The TOC, SAR, and CAR values were all high during 5800~2700 cal yr BP at Huangqi-
hai located in the forest–steppe ecotone in northern China. The vegetation and soil erosion
exerted a direct impact on carbon accumulation in the sediment, especially the vegetation
coverage and broadleaved forest. The vegetation dynamics influenced the CAR signif-
icantly because of various carbon density and GPP for different vegetation types. Our
study implies that the replacement of forest by steppe along with future climate drying
and accelerated dryland expansion in the study area might reduce carbon accumulation.
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