Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Hong Ou Mandel interferometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1006 KiB  
Article
Photon Phase Delay Sensing with Sub-Attosecond Uncertainty
by Fabrizio Sgobba, Andrea Andrisani and Luigi Santamaria Amato
Sensors 2024, 24(7), 2202; https://doi.org/10.3390/s24072202 - 29 Mar 2024
Cited by 1 | Viewed by 1147
Abstract
The application of statistical estimation theory to Hong–Ou–Mandel interferometry led to enticing results in terms of the detection limit for photon reciprocal delay and polarisation measurement. In the following paper, a fully fibre-coupled setup operating in the telecom wavelength region proves to achieve, [...] Read more.
The application of statistical estimation theory to Hong–Ou–Mandel interferometry led to enticing results in terms of the detection limit for photon reciprocal delay and polarisation measurement. In the following paper, a fully fibre-coupled setup operating in the telecom wavelength region proves to achieve, for the first time, in common-path Hong–Ou–Mandel-based interferometry, a detection limit for photon phase delay at the zeptosecond scale. The experimental results are then framed in a theoretical model by calculating the Cramer–Rao bound (CRB) and, after comparison with the obtained experimental results, it is shown that our setup attains the optimal measurement, nearly saturating CRB. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

8 pages, 751 KiB  
Communication
Attosecond-Level Delay Sensing via Temporal Quantum Erasing
by Fabrizio Sgobba, Andrea Andrisani, Stefano Dello Russo, Mario Siciliani de Cumis and Luigi Santamaria Amato
Sensors 2023, 23(18), 7758; https://doi.org/10.3390/s23187758 - 8 Sep 2023
Cited by 3 | Viewed by 1246
Abstract
Traditional Hong-Ou-Mandel (HOM) interferometry, insensitive to photons phase mismatch, proved to be a rugged single-photon interferometric technique. By introducing a post-beam splitter polarization-dependent delay, it is possible to recover phase-sensitive fringes, obtaining a temporal quantum eraser that maintains the ruggedness of the original [...] Read more.
Traditional Hong-Ou-Mandel (HOM) interferometry, insensitive to photons phase mismatch, proved to be a rugged single-photon interferometric technique. By introducing a post-beam splitter polarization-dependent delay, it is possible to recover phase-sensitive fringes, obtaining a temporal quantum eraser that maintains the ruggedness of the original HOM with enhanced sensitivity. This setup shows promising applications in biological sensing and optical metrology, where high sensitivity requirements are coupled with the necessity to keep light intensity as low as possible to avoid power-induced degradation. In this paper, we developed a highly sensitive single photon birefringence-induced delay sensor operating in the telecom range (1550 nm). By using a temporal quantum eraser based on common path Hongr-Ou-Mandel Interferometry, we were able to achieve a sensitivity of 4 as for an integration time of 2·104 s. Full article
(This article belongs to the Special Issue Quantum Sensors and Sensing Technology)
Show Figures

Figure 1

9 pages, 396 KiB  
Communication
Optimal Measurement of Telecom Wavelength Single Photon Polarisation via Hong-Ou-Mandel Interferometry
by Fabrizio Sgobba, Deborah Katia Pallotti, Arianna Elefante, Stefano Dello Russo, Daniele Dequal, Mario Siciliani de Cumis and Luigi Santamaria Amato
Photonics 2023, 10(1), 72; https://doi.org/10.3390/photonics10010072 - 9 Jan 2023
Cited by 7 | Viewed by 2155
Abstract
The use of statistical estimation theory to boost the metrological performance of the measurement apparatus is becoming increasingly popular in a wide range of applications. Recently, such an approach has been adopted in Hong Ou Mandel interferometry, setting a new record in time [...] Read more.
The use of statistical estimation theory to boost the metrological performance of the measurement apparatus is becoming increasingly popular in a wide range of applications. Recently, such an approach has been adopted in Hong Ou Mandel interferometry, setting a new record in time delay and polarization measurement. Here, we extend these pioneering experiments in the telecom range to unlock the full potential of the information-based approach combined with a versatile spectral range, aiming for its adoption in fiber-coupled devices of up to hundreds of kilometers long as bobines or optical networks. Our measurement saturates the Cramér-Rao bound and in a long lasting experiment returns an Allan deviation of the polarization angle of 0.002 degs in 1 h of integration time. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

Back to TopTop