Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Hollow mesoporous silica (HMS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7480 KiB  
Article
Size Tuning of Mesoporous Silica Adjuvant for One-Shot Vaccination with Long-Term Anti-Tumor Effect
by Xiupeng Wang, Yu Sogo and Xia Li
Pharmaceutics 2024, 16(4), 516; https://doi.org/10.3390/pharmaceutics16040516 - 8 Apr 2024
Cited by 1 | Viewed by 2087
Abstract
Despite recent clinical successes in cancer immunotherapy, it remains difficult to initiate a long-term anti-tumor effect. Therefore, repeated administrations of immune-activating agents are generally required in most cases. Herein, we propose an adjuvant particle size tuning strategy to initiate a long-term anti-tumor effect [...] Read more.
Despite recent clinical successes in cancer immunotherapy, it remains difficult to initiate a long-term anti-tumor effect. Therefore, repeated administrations of immune-activating agents are generally required in most cases. Herein, we propose an adjuvant particle size tuning strategy to initiate a long-term anti-tumor effect by one-shot vaccination. This strategy is based on the size-dependent immunostimulation mechanism of mesoporous silica particles. Hollow mesoporous silica (HMS) nanoparticles enhance the antigen uptake with dendritic cells around the immunization site in vivo. In contrast, hierarchically porous silica (HPS) microparticles prolong cancer antigen retention and release in vivo. The size tuning of the mesoporous silica adjuvant prepared by combining both nanoparticles and microparticles demonstrates the immunological properties of both components and has a long-term anti-tumor effect after one-shot vaccination. One-shot vaccination with HMS-HPS-ovalbumin (OVA)-Poly IC (PIC, a TLR3 agonist) increases CD4+ T cell, CD8+ T cell, and CD86+ cell populations in draining lymph nodes even 4 months after vaccination, as well as effector memory CD8+ T cell and tumor-specific tetramer+CD8+ T cell populations in splenocytes. The increases in the numbers of effector memory CD8+ T cells and tumor-specific tetramer+CD8+ T cells indicate that the one-shot vaccination with HMS-HPS-OVA-PIC achieved the longest survival time after a challenge with E.G7-OVA cells among all groups. The size tuning of the mesoporous silica adjuvant shows promise for one-shot vaccination that mimics multiple clinical vaccinations in future cancer immunoadjuvant development. This study may have important implications in the long-term vaccine design of one-shot vaccinations. Full article
(This article belongs to the Special Issue Anti-Cancer Drug Delivery Systems)
Show Figures

Figure 1

16 pages, 3031 KiB  
Article
Synthesis of Hollow Mesoporous Silica Nanospheroids with O/W Emulsion and Al(III) Incorporation and Its Catalytic Activity for the Synthesis of 5-HMF from Carbohydrates
by Anirban Ghosh, Biswajit Chowdhury and Asim Bhaumik
Catalysts 2023, 13(2), 354; https://doi.org/10.3390/catal13020354 - 5 Feb 2023
Cited by 12 | Viewed by 3517
Abstract
Controlling the particle size as well as porosity and shape of silica nanoparticles is always a big challenge while tuning their properties. Here, we designed a cost-effective, novel, green synthetic method for the preparation of perforated hollow mesoporous silica nanoparticles (PHMS-1) using a [...] Read more.
Controlling the particle size as well as porosity and shape of silica nanoparticles is always a big challenge while tuning their properties. Here, we designed a cost-effective, novel, green synthetic method for the preparation of perforated hollow mesoporous silica nanoparticles (PHMS-1) using a very minute amount of cationic surfactant in o/w-type (castor oil in water) emulsion at room temperature. The grafting of Al(III) through post-synthetic modification onto this silica framework (PHMS-2, Si/Al ~20 atomic percentage) makes this a very efficient solid acid catalyst for the conversion of monosaccharides to 5-HMF. Brunauer–Emmett–Teller (BET) surface area for the pure silica and Al-doped mesoporous silica nanoparticles (MSNs) were found to be 866 and 660 m2g−1, respectively. Powder XRD, BET and TEM images confirm the mesoporosity of these materials. Again, the perforated hollow morphology was investigated using scanning electron microscopic analysis. Al-doped hollow MSNs were tested for acid catalytic-biomass conversion reactions. Our results show that PHMS-2 has much higher catalytic efficiency than contemporary aluminosilicate frameworks (83.7% of 5-HMF yield in 25 min at 160 °C for fructose under microwave irradiation). Full article
(This article belongs to the Special Issue Catalytic Conversion of Biomass to Added Value Chemicals)
Show Figures

Graphical abstract

14 pages, 3369 KiB  
Article
Construction of Prochloraz-Loaded Hollow Mesoporous Silica Nanoparticles Coated with Metal–Phenolic Networks for Precise Release and Improved Biosafety of Pesticides
by Liyin Shi, Qianwei Liang, Qikai Zang, Ze Lv, Xiaohan Meng and Jianguo Feng
Nanomaterials 2022, 12(16), 2885; https://doi.org/10.3390/nano12162885 - 22 Aug 2022
Cited by 25 | Viewed by 3618
Abstract
Currently, environmental-responsive pesticide delivery systems have become an essential way to improve the effective utilization of pesticides. In this paper, by using hollow mesoporous silica (HMS) as a nanocarrier and TA-Cu metal–phenolic networks as a capping agent, a pH-responsive controlled release nano-formulation loaded [...] Read more.
Currently, environmental-responsive pesticide delivery systems have become an essential way to improve the effective utilization of pesticides. In this paper, by using hollow mesoporous silica (HMS) as a nanocarrier and TA-Cu metal–phenolic networks as a capping agent, a pH-responsive controlled release nano-formulation loaded with prochloraz (Pro@HMS-TA-Cu) was constructed. The structure and properties of Pro@HMS-TA-Cu were adequately characterised and analysed. The results showed that the loading content of Pro@HMS-TA-Cu nanoparticles was about 17.7% and the Pro@HMS-TA-Cu nanoparticles exhibited significant pH-responsive properties. After a coating of the TA-Cu metal–phenolic network, the contact angle and adhesion work of Pro@HMS-TA-Cu nanoparticles on the surface of oilseed rape leaves after 360 s were 59.6° and 107.2 mJ·m−2, respectively, indicating that the prepared nanoparticles possessed excellent adhesion. In addition, the Pro@HMS-TA-Cu nanoparticles demonstrated better antifungal activity against Sclerotinia sclerotiorum and lower toxicity to zebrafish compared to prochloraz technical. Hence, the pH-responsive nanoparticles prepared with a TA-Cu metal–phenolic network as a capping agent are highly efficient and environmentally friendly, providing a new approach for the development of new pesticide delivery systems. Full article
Show Figures

Graphical abstract

12 pages, 43390 KiB  
Article
A Novel Yolk–Shell Fe3O4@ Mesoporous Carbon Nanoparticle as an Effective Tumor-Targeting Nanocarrier for Improvement of Chemotherapy and Photothermal Therapy
by Haina Tian, Ruifeng Zhang, Jiaqi Li, Cailin Huang, Wen Sun, Zhenqing Hou and Peiyuan Wang
Int. J. Mol. Sci. 2022, 23(3), 1623; https://doi.org/10.3390/ijms23031623 - 30 Jan 2022
Cited by 14 | Viewed by 3743
Abstract
Owing to their good stability and high photothermal conversion efficiency, the development of carbon-based nanoparticles has been intensively investigated, while the limitation of unsatisfactory cellular internalization impedes their further clinical application. Herein, we report a novel strategy for fabrication of Fe3O [...] Read more.
Owing to their good stability and high photothermal conversion efficiency, the development of carbon-based nanoparticles has been intensively investigated, while the limitation of unsatisfactory cellular internalization impedes their further clinical application. Herein, we report a novel strategy for fabrication of Fe3O4 yolk–shell mesoporous carbon nanocarriers (Fe3O4@hmC) with monodispersity and uniform size, which presented significantly higher cell membrane adsorption and cellular uptake properties in comparison with common solid silica-supported mesoporous carbon nanoparticles with core–shell structure. Moreover, the MRI performance of this novel Fe-based nanoparticle could facilitate precise tumor diagnosis. More importantly, after DOX loading (Fe3O4@hmC-DOX), owing to synergistic effect of chemo–phototherapy, this therapeutic agent exhibited predominant tumor cell ablation capability under 808 nm NIR laser irradiation, both in vitro and in vivo. Our work has laid a solid foundation for therapeutics with hollowed carbon shell for solid tumor diagnosis and therapy in clinical trials. Full article
(This article belongs to the Special Issue Biomedical Applications of Carbon Nanostructures)
Show Figures

Figure 1

15 pages, 3202 KiB  
Article
Core-Shell Structure Design of Hollow Mesoporous Silica Nanospheres Based on Thermo-Sensitive PNIPAM and pH-Responsive Catechol-Fe3+ Complex
by Weili Peng, Zeping Zhang, Minzhi Rong and Mingqiu Zhang
Polymers 2019, 11(11), 1832; https://doi.org/10.3390/polym11111832 - 7 Nov 2019
Cited by 20 | Viewed by 6544
Abstract
A kind of core-shell hybrid nanoparticle comprised of a hollow mesoporous silica nanoparticles (HMS) core and a copolymer shell bearing N-(3,4-dihydroxyphenethyl) methacrylamide (DMA) and N-isopropylacrylamide (NIPAM) as responsive moieties was prepared. Moreover, the factors that could impact the surface morphology and hierarchical porous [...] Read more.
A kind of core-shell hybrid nanoparticle comprised of a hollow mesoporous silica nanoparticles (HMS) core and a copolymer shell bearing N-(3,4-dihydroxyphenethyl) methacrylamide (DMA) and N-isopropylacrylamide (NIPAM) as responsive moieties was prepared. Moreover, the factors that could impact the surface morphology and hierarchical porous structure were discussed. In the presence of Fe3+, catechol-Fe3+ complexes were formed to achieve pH-responsive polymer shell, combining with thermal-sensitiveness of poly(N-isopropylacrylamide). Doxorubicin (DOX) was applied as a model drug and the behaviors of its loading/release behaviors were investigated to prove the idea. The results exhibited a significant drug loading capacity of 8.6% and embed efficiency of 94.6% under 1 mg ml–1 DOX/PBS solution. In fact, the loading capacity of drug can be easily improved to as high as 28.0% by increasing the DOX concentration. The vitro cytotoxicity assay also indicated that the as-prepared nanoparticles have no significant cytotoxicity on RAW 264.7 cells. The in vitro experiment showed that the cumulative release of DOX was obviously dependent on the temperature and pH values. This pH/temperature-sensitive hollow mesoporous silica nanosphere is expected to have potential applications in controlled drug release. Full article
(This article belongs to the Collection Silicon-Containing Polymeric Materials)
Show Figures

Graphical abstract

Back to TopTop