Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Hojiblanca cv

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4016 KiB  
Article
Enhanced Thermal Resilience of Olive Oils: Fatty Acid Dynamics with Polyphenols Supplementation
by Taha Mehany, José M. González-Sáiz and Consuelo Pizarro
Foods 2025, 14(12), 2085; https://doi.org/10.3390/foods14122085 - 13 Jun 2025
Viewed by 679
Abstract
This study investigates the impact of hydroxytyrosol (HTyr) supplementation on the fatty acid profiles and oxidative stability of various extra virgin olive oil (EVOO) cultivars and other edible oils during prolonged deep-frying. EVOO cultivars including Picual, Cornicabra, Empeltre, Arbequina, Hojiblanca, Manzanilla, Royuela, Koroneiki, [...] Read more.
This study investigates the impact of hydroxytyrosol (HTyr) supplementation on the fatty acid profiles and oxidative stability of various extra virgin olive oil (EVOO) cultivars and other edible oils during prolonged deep-frying. EVOO cultivars including Picual, Cornicabra, Empeltre, Arbequina, Hojiblanca, Manzanilla, Royuela, Koroneiki, and Arbosana were analyzed alongside two sunflower oils and three refined olive oils under thermal stress at 170–210 °C for 3–6 h. HTyr consistently preserved monounsaturated fatty acids (MUFAs), particularly oleic acid (C18:1), while significantly reducing the degradation of polyunsaturated (PUFAs) and saturated fatty acids (SFAs) (p < 0.05) in many oil samples; for example, in olive oil °1, TMUFAs in Exp 1 revealed 7.28%, while in Exp 5 (with HTyr), TMUFAs increased to 7.47%. In olive oil °0.4, TMUFAs increased from 8.52% in Exp 1 to 9.17% in Exp 5. Additionally, In EVOO cv. Picual, total SFAs increased slightly, from 16.58% in Exp 1 to 16.96%, in Exp 5. Notably, total MUFA content (TMUFAs) was best preserved in Manzanilla (81.92%), followed by Hojiblanca (78.52%), Empeltre (78.09%), olive oil 1° (78.20%), Koroneiki (77.60%), and Arbosana (77.01%) (p < 0.05), indicating strong oxidative resistance. In Arbequina and Royuela oils, oleic acid retention also exceeded 76% after deep-frying. HTyr helped maintain fatty acid profiles within EU regulatory limits across most cultivars, despite minor exceedances in specific SFAs, such as lignoceric acid (C24:0), likely due to varietal traits or harvest timing. Principal component analysis (PCA) revealed distinct clustering patterns: sunflower oils grouped around linoleic acid (C18:2), reflecting high PUFA content, while olive oils clustered near oleic and palmitic acids. Cultivars such as Picual, Empeltre, Manzanilla, and Royuela showed unique associations with lignoceric acid, supporting the use of fatty acid profiles as cultivar-specific markers. HTyr supplementation enhanced oxidative stability and quality retention across oil types in terms of fatty acids profile, corroborating previous findings on the resilience of polyphenol-rich EVOOs under thermal stress. Furthermore, fatty acid composition varied significantly according to cultivar, HTyr, and deep-frying (p < 0.05), highlighting the complexity of oil quality determinants. This study supports the application of HTyr as a natural antioxidant to improve thermal stability and nutritional quality, not only in olive oils but also in other edible oils. These findings promote sustainable practices aligned with circular economy principles and advance the understanding of fatty acid dynamics during deep-frying. HTyr-enriched oils present promising potential in both culinary and industrial contexts. Full article
Show Figures

Figure 1

20 pages, 2668 KiB  
Article
Effect of Spanish-Style Table Olive Processing on Fatty Acid Profile: A Compositional Data Analysis (CoDA) Approach
by Antonio Garrido-Fernández, Amparo Cortés-Delgado and Antonio López-López
Foods 2022, 11(24), 4024; https://doi.org/10.3390/foods11244024 - 13 Dec 2022
Cited by 1 | Viewed by 1715
Abstract
This manuscript considers that the composition of Manzanilla and Hojiblanca fats are compositional data (CoDa). Thus, the work applies CoDa analysis (CoDA) to investigate the effect of processing and packaging on the fatty acid profiles of these cultivars. To this aim, the values [...] Read more.
This manuscript considers that the composition of Manzanilla and Hojiblanca fats are compositional data (CoDa). Thus, the work applies CoDa analysis (CoDA) to investigate the effect of processing and packaging on the fatty acid profiles of these cultivars. To this aim, the values of the fat components in percentages were successively subjected to exploratory CoDA tools and, later, transformed into ilr (isometric log-ratio) coordinates in the Euclidean space, where they were subjected to the standard multivariate techniques. The results from the first approach (bar plots of geometric means, tetrahedral plots, compositional biplots, and balance dendrograms) showed that the effect of processing was limited while most of the variability among the fatty acid (FA) profiles was due to cultivars. The application of the standard multivariate methods (i.e., Canonical variates, Linear Discriminant Analysis (LDA), ANOVA/MANOVA with bootstrapping and n = 1000, and nested General Linear Model (GLM)) to the ilr coordinates transformed data, following Ward’s clustering or descending order of variances criteria, showed similar effects to the exploratory analysis but also showed that Hojiblanca was more sensitive to fat modifications than Manzanilla. On the contrary, associating GLM changes in ilr with fatty acids was not straightforward because of the complex deduction of some coordinates. Therefore, according to the CoDA, table olive fatty acid profiles are scarcely affected by Spanish-style processing compared with the differences between cultivars. This work has demonstrated that CoDA could be successfully applied to study the fatty acid profiles of olive fat and olive oils and may represent a model for the statistical analysis of other fats, with the advantage of applying appropriate statistical techniques and preventing misinterpretations. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

13 pages, 1563 KiB  
Article
Chemical and Enzymatic Characterization of Leaves from Spanish Table Olive Cultivars
by Eva María Ramírez, Manuel Brenes, Concepción Romero and Eduardo Medina
Foods 2022, 11(23), 3879; https://doi.org/10.3390/foods11233879 - 1 Dec 2022
Cited by 5 | Viewed by 2061
Abstract
Olive leaves are generated as by-products in the olive industry and contain substances with biological properties that provide health benefits. Although these compounds have been characterized in many leaves from olive cultivars devoted to olive oil extraction, few data are available on leaves [...] Read more.
Olive leaves are generated as by-products in the olive industry and contain substances with biological properties that provide health benefits. Although these compounds have been characterized in many leaves from olive cultivars devoted to olive oil extraction, few data are available on leaves from the processing of table olives. In this study, the concentration of polyphenols, triterpenic acids, sugars and enzymatic activities (polyphenol oxidase, peroxidase, β-glucosidase and esterase) were determined in the leaves of the olive tree (Olea europaea L.) of cvs. Aloreña, Cacereña, Empeltre, Hojiblanca, Manzanilla, Verdial, Gordal and Morona. The mean total phenolic content in olive leaves reached 75.58 g/kg fresh weight, and oleuropein was the main polyphenol identified (89.7–96.5%). The main triterpenic acid identified was oleanolic acid, and the main sugar was mannitol, with mean values of 15.83 and 22.31 g/kg, respectively. However, the content of these biocompounds was influenced by the type of cultivar and the orchards of origin. The highest oleuropein content was found in the Manzanilla variety, while the Gordal had the highest triterpene and mannitol content. In particular, the phenolic content could also be affected by endogenous enzymatic activities. High polyphenol oxidase, peroxidase and β-glucosidase activity and low esterase activity were detected, compared to the fruit. Similar to the phenolic compounds, enzymatic activities varied with the harvesting season. The lowest phenolic content corresponded to the highest polyphenol oxidase activity detected during spring. The rest of the enzymatic activities also varied throughout the year, but no common trend was observed. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

17 pages, 2878 KiB  
Article
The Infestation of Olive Fruits by Bactrocera oleae (Rossi) Modifies the Expression of Key Genes in the Biosynthesis of Volatile and Phenolic Compounds and Alters the Composition of Virgin Olive Oil
by Andrés Notario, Rosario Sánchez, Pilar Luaces, Carlos Sanz and Ana G. Pérez
Molecules 2022, 27(5), 1650; https://doi.org/10.3390/molecules27051650 - 2 Mar 2022
Cited by 16 | Viewed by 3380
Abstract
Bactrocera oleae, the olive fruit fly, is one of the most important pests affecting the olive fruit, causing serious quantitative and qualitative damage to olive oil production. In this study, the changes induced by B. oleae infestation in the biosynthesis of volatile [...] Read more.
Bactrocera oleae, the olive fruit fly, is one of the most important pests affecting the olive fruit, causing serious quantitative and qualitative damage to olive oil production. In this study, the changes induced by B. oleae infestation in the biosynthesis of volatile and phenolic compounds in olive (cvs. Picual, Manzanilla, and Hojiblanca) have been analyzed. Despite cultivar differences, the oils obtained from infested fruits showed a significant increase in the content of certain volatile compounds such as (E)-hex-2-enal, ethanol, ethyl acetate, and β-ocimene and a drastic decrease of the phenolic contents. The impact of those changes on the inferred quality of the oils has been studied. In parallel, the changes induced by the attack of the olive fly on the expression of some key genes in the biosynthesis of volatile and phenolic compounds, such as lipoxygenase, β-glucosidase, and polyphenol oxidase, have been analyzed. The strong induction of a new olive polyphenol oxidase gene (OePPO2) explains the reduction of phenolic content in the oils obtained from infested fruits and suggest the existence of a PPO-mediated oxidative defense system in olives. Full article
(This article belongs to the Collection Recent Advances in Flavors and Fragrances)
Show Figures

Figure 1

Back to TopTop