Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = HfOxNy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4278 KiB  
Article
Flexible and Disposable Hafnium Nitride Extended Gates Fabricated by Low-Temperature High-Power Impulse Magnetron Sputtering
by Chia-Ming Yang, Chao-Hui Wei, Jia-Yuan Chang and Chao-Sung Lai
Nanomaterials 2024, 14(14), 1191; https://doi.org/10.3390/nano14141191 - 12 Jul 2024
Cited by 1 | Viewed by 1577
Abstract
To obtain a high-performance extended gate field-effect transistor for pH detection, hafnium nitride (HfN) was first fabricated on an indium tin oxide on polyethylene terephthalate (ITO/PET) substrate using a high-power impulse magnetron sputter system (HiPIMS) in this study. It can be easily applied [...] Read more.
To obtain a high-performance extended gate field-effect transistor for pH detection, hafnium nitride (HfN) was first fabricated on an indium tin oxide on polyethylene terephthalate (ITO/PET) substrate using a high-power impulse magnetron sputter system (HiPIMS) in this study. It can be easily applied in biomedical diagnostic and environmental monitoring applications with the advantages of flexible, disposable, cost-effective, and reliable components. Various duty cycle conditions in HiPIMSs were designed to investigate the corresponding sensing performance and material properties including surface morphology and composition. As the duty cycle increased, the grain size of HfN increased. Additionally, X-ray photoelectron spectroscopy (XPS) analysis illustrated the presence of HfOxNy on the deposited HfN surface. Both behaviors could result in a better pH sensing performance based on the theory of the site-binding model. Subsequently, HfN with a 15% duty cycle exhibited excellent pH sensitivity and linearity, with values of 59.3 mV/pH and 99.8%, respectively; its hysteresis width and drift coefficient were −1 mV and 0.5 mV/h, respectively. Furthermore, this pH-sensing performance remained stable even after 2000 repeated bending cycles. These results indicate the potential and feasibility of this HiPIMS-deposited HfN for future wearable chemical applications. Full article
Show Figures

Figure 1

16 pages, 5352 KiB  
Article
Studies of Electrical Parameters and Thermal Stability of HiPIMS Hafnium Oxynitride (HfOxNy) Thin Films
by Mirosław Puźniak, Wojciech Gajewski, Aleksandra Seweryn, Marcin T. Klepka, Bartłomiej S. Witkowski, Marek Godlewski and Robert Mroczyński
Materials 2023, 16(6), 2539; https://doi.org/10.3390/ma16062539 - 22 Mar 2023
Cited by 2 | Viewed by 1996
Abstract
This work demonstrated the optimization of HiPIMS reactive magnetron sputtering of hafnium oxynitride (HfOxNy) thin films. During the optimization procedure, employing Taguchi orthogonal tables, the parameters of examined dielectric films were explored, utilizing optical methods (spectroscopic ellipsometry and refractometry), [...] Read more.
This work demonstrated the optimization of HiPIMS reactive magnetron sputtering of hafnium oxynitride (HfOxNy) thin films. During the optimization procedure, employing Taguchi orthogonal tables, the parameters of examined dielectric films were explored, utilizing optical methods (spectroscopic ellipsometry and refractometry), electrical characterization (C-V, I-V measurements of MOS structures), and structural investigation (AFM, XRD, XPS). The thermal stability of fabricated HfOxNy layers, up to 800 °C, was also investigated. The presented results demonstrated the correctness of the optimization methodology. The results also demonstrated the significant stability of hafnia-based layers at up to 800 °C. No electrical parameters or surface morphology deteriorations were demonstrated. The structural analysis revealed comparable electrical properties and significantly greater immunity to high-temperature treatment in HfOxNy layers formed using HiPIMS, as compared to those formed using the standard pulsed magnetron sputtering technique. The results presented in this study confirmed that the investigated hafnium oxynitride films, fabricated through the HiPIMS process, could potentially be used as a thermally-stable gate dielectric in self-aligned MOS structures and devices. Full article
(This article belongs to the Special Issue Trends in Electronic and Optoelectronic Materials)
Show Figures

Figure 1

Back to TopTop