Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Helicoverpa armigera (Hübner, 1808)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1246 KB  
Article
Suitability of Artificial Diets Containing Various Types of Pollen Grains to Helicoverpa armigera (Hübner, 1808): Nutritional Performance and Digestive Enzyme Response
by Fatemeh Kefayat, Seyed Ali Hemmati, Arash Rasekh, Fatemeh Nasernakhaei and Lukasz L. Stelinski
Insects 2025, 16(4), 429; https://doi.org/10.3390/insects16040429 - 19 Apr 2025
Cited by 3 | Viewed by 1135
Abstract
The development of an effective artificial diet is essential for the mass rearing of insects used in pest management programs, including augmentative biological control, insecticide resistance monitoring, and sterile insect release. This study evaluated the consumption, utilization, and enzymatic responses of the polyphagous [...] Read more.
The development of an effective artificial diet is essential for the mass rearing of insects used in pest management programs, including augmentative biological control, insecticide resistance monitoring, and sterile insect release. This study evaluated the consumption, utilization, and enzymatic responses of the polyphagous pest Helicoverpa armigera (Hübner, 1808) (Lepidoptera: Noctuidae) when reared on meridic diets supplemented with different pollen grains. The control diet followed a well-established meridic formulation, while the eight experimental diets incorporated pollen from the honey bee, rapeseed, maize, sunflower, hollyhock, glossy shower, saffron, and date palm. The findings indicate that pollen supplementation enhances the quality of artificial diets for H. armigera. Larvae fed on the date palm pollen-supplemented diet exhibited significantly higher weight gain, efficiency of conversion of ingested food (ECI), efficiency of conversion of digested food (ECD), and relative growth rate (RGR) compared to those fed on the control diet. The highest relative consumption rate (RCR) was observed in larvae fed on the sunflower pollen-supplemented diet. Additionally, pollen-supplemented diets influenced the amylolytic and proteolytic enzyme activities of H. armigera larvae in a diet-dependent manner. Nutritional analysis of the pollen types revealed significant variations in the sugar, lipid, and protein contents. Cluster analysis further identified the date palm pollen-supplemented diet as the most nutritionally beneficial, suggesting its potential application in the large-scale production of H. armigera. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Graphical abstract

16 pages, 4142 KB  
Article
The Effects of Global Climate Warming on the Developmental Parameters of Helicoverpa armigera (Hübner, 1808) (Lepidoptera: Noctuidae)
by Zhiqian Liu, Biyu Liu, Huan Yu, Honghua Zhang, Zhipeng He and Zhihang Zhuo
Insects 2024, 15(11), 888; https://doi.org/10.3390/insects15110888 - 13 Nov 2024
Cited by 6 | Viewed by 2311
Abstract
Helicoverpa armigera (Hübner, 1808) is a significant global agricultural pest, particularly posing a major threat during the boll-forming stage of cotton. In recent years, the severity of its damage has increased markedly, and its population dynamics and biological characteristics may be profoundly affected [...] Read more.
Helicoverpa armigera (Hübner, 1808) is a significant global agricultural pest, particularly posing a major threat during the boll-forming stage of cotton. In recent years, the severity of its damage has increased markedly, and its population dynamics and biological characteristics may be profoundly affected by global climate change. This study conducted a systematic meta-analysis to evaluate the life history traits of H. armigera under conditions of rising global temperatures, different photoperiods, and humidity levels. A comprehensive analysis of 26 related studies revealed that different developmental stages of H. armigera have distinct temperature requirements. When the temperature is within an optimal range (32 °C to 35 °C), the development rate of H. armigera accelerates, the life cycle shortens, and the reproductive capacity of female moths increases. However, when the temperature exceeds 35 °C, development slows, mortality rates increase, and the oviposition of female moths decreases significantly, indicating a negative impact of high temperatures on growth and reproduction. Overall, as the temperature rises above 20 °C, various physiological indicators of H. armigera significantly improve, and at 32 °C, the larval development period and overall life cycle reach their shortest duration. This meta-analysis provides new insights into the biological responses of H. armigera in the context of climate change and offers a scientific basis for future control strategies. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 1594 KB  
Article
Shifts in Ecological Dominance between Two Lepidopteran Species in Refuge Areas of Bt Cotton
by José Bruno Malaquias, Danilo Renato Santiago Santana, Paulo Eduardo Degrande, Claudia Pio Ferreira, Elmo Pontes de Melo, Wesley Augusto Conde Godoy, Jéssica Karina da Silva Pachú, Francisco de Sousa Ramalho, Celso Omoto, Alexandre Igor de Azevedo Pereira and Renato Anastacio Guazina
Insects 2021, 12(2), 157; https://doi.org/10.3390/insects12020157 - 12 Feb 2021
Cited by 8 | Viewed by 2778
Abstract
Competition behavior involving agricultural pest species has long been viewed as a powerful selective force that drives ecological and phenotypic diversity. In this context, a Game Theory-based approach may be useful to describe the decision-making dilemma of a competitor with impacts to guarantee [...] Read more.
Competition behavior involving agricultural pest species has long been viewed as a powerful selective force that drives ecological and phenotypic diversity. In this context, a Game Theory-based approach may be useful to describe the decision-making dilemma of a competitor with impacts to guarantee its superiority in terms of ecological dominance or sharing of the food resource with its competitor. In an attempt to elucidate the consequences of competitive dynamics for the ecological dominance of these species in refuge areas of Bt cotton, we conducted a study that was divided into two parts. The first study consisted of an evaluation of interactions involving Spodoptera frugiperda (JE Smith, 1797) and Helicoverpa armigera (Hübner, 1808) on non-Bt cotton plants in a field trial. In the second study, we explored the data matrix collected in the field to parameterize a model of Cellular Automata (CA) with update rules inspired by Game Theory. Computer simulations were analyzed in hypothetical scenarios involving the application (or not) of insecticides in the refuge areas in combination with the resistance factor of one or both pest species to the insecticides used in the refuge areas. H. armigera had superior competitive performance in relation to S. frugiperda only at high densities. According to the density-mediated shift in dominance of the species, the resistance of S. frugiperda to insecticides is seen as a risk factor for the production of susceptible individuals of H. armigera on a large scale in the refuge areas. Additionally, S. frugiperda insecticide resistance may potentially impact the resistance evolution of the H. armigera population to Bt cotton. Thus, ecological dominance could diverge by the presence of a resistance allele to insecticides with interspecific competition perhaps subordinate to evolutionary processes. Full article
Show Figures

Figure 1

Back to TopTop