Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = HS-LMD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7170 KiB  
Article
Temperature Evaluation of Cladding Beads and the Surrounding Area during the Laser Metal Deposition Process
by Yorihiro Yamashita, Kholqillah Ardhian Ilman, Takahiro Kunimine and Yuji Sato
J. Manuf. Mater. Process. 2023, 7(6), 192; https://doi.org/10.3390/jmmp7060192 - 28 Oct 2023
Cited by 3 | Viewed by 2383
Abstract
Cracks usually generate during the formation of beads composed of a WC-12mass%Co cemented carbide by the laser metal deposition (LMD). Measuring temperatures of the formed bead and substrate during the LMD process is important for realizing crack-free beads. In this study, temperatures of [...] Read more.
Cracks usually generate during the formation of beads composed of a WC-12mass%Co cemented carbide by the laser metal deposition (LMD). Measuring temperatures of the formed bead and substrate during the LMD process is important for realizing crack-free beads. In this study, temperatures of the substrate around the formed bead during the LMD process were measured using a thermoviewer. Temperatures of the formed beads during the LMD process were predicted by simulation based on the thermal conduction analysis using the experimentally measured temperatures of the substrate. The experimental results obtained during forming the WC-12mass%Co cemented carbide beads on JIS SKH51 (ISO HS-6-5-2) substrates showed that the maximal temperatures of the substrates at 0.2 mm away from the center of the formed beads ranged from 229 °C to 341 °C at laser powers ranging from 80 W to 160 W. The predicted maximal temperatures of the formed beads were in the range of 2433 °C to 4491 °C in the simulation using a laser absorption coefficient of 0.35 for the substrate. Validity of these simulation results was discussed based on the melting point of the substrate and microstructures of the formed WC-12mass%Co cemented carbide beads. Full article
(This article belongs to the Special Issue Advances in Metal Additive Manufacturing/3D Printing)
Show Figures

Figure 1

12 pages, 3560 KiB  
Article
Non-Metallic Alloying Constituents to Develop a Wear-Resistant CrFeNi-BSiC High-Entropy Alloy for Surface Protective Coatings by Thermal Spraying and High-Speed Laser Metal Deposition
by Thomas Lindner, Bianca Preuß, Martin Löbel, Lisa-Marie Rymer, Maximilian Grimm, Holger Schwarz, Thomas Seyller and Thomas Lampke
Coatings 2023, 13(2), 291; https://doi.org/10.3390/coatings13020291 - 27 Jan 2023
Cited by 6 | Viewed by 2327
Abstract
Compositional alterations to high-entropy alloys (HEAs) allow further evolution of these materials by adjusting their property profiles. This way, they can be used for coating technologies and surface-protection applications. In the present work, minor quantities of the non-metallic alloying constituents, BSiC, were added [...] Read more.
Compositional alterations to high-entropy alloys (HEAs) allow further evolution of these materials by adjusting their property profiles. This way, they can be used for coating technologies and surface-protection applications. In the present work, minor quantities of the non-metallic alloying constituents, BSiC, were added to the CrFeNi base system. The alloy development was carried out in an electric arc furnace in comparison with the nickel-based alloy Ni-600. With regard to the BSiC-free variant, the wear resistance can be significantly increased. The powder was manufactured by inert gas atomization and characterized, followed by processing via high-velocity oxy-fuel spraying (HVOF) and high velocity laser metal deposition (HS-LMD). Depending on the manufacturing conditions, the proportion and shape of the precipitates within the microstructure differ. Compared to both the reference system and the as-cast condition, the coating systems demonstrated comparable or improved resistance to wear. The evaluation of the process–structure–property relationships confirmed the great potential of developing load-adapted HEA systems using non-metallic alloy constituents in the field of surface engineering. Full article
(This article belongs to the Special Issue High-Entropy Alloy Coatings and Surface Functionalization)
Show Figures

Figure 1

6 pages, 2164 KiB  
Communication
High-Speed Laser Metal Deposition of CrFeCoNi and AlCrFeCoNi HEA Coatings with Narrow Intermixing Zone and their Machining by Turning and Diamond Smoothing
by Thomas Lindner, Hendrik Liborius, Gerd Töberling, Sabrina Vogt, Bianca Preuß, Lisa-Marie Rymer, Andreas Schubert and Thomas Lampke
Coatings 2022, 12(7), 879; https://doi.org/10.3390/coatings12070879 - 21 Jun 2022
Cited by 10 | Viewed by 2213
Abstract
The processing of high-entropy alloys (HEAs) via laser metal deposition (LMD) is well known. However, it is still difficult to avoid chemical intermixing of the elements between the coating and the substrate. Therefore, the produced coatings do not have the same chemical composition [...] Read more.
The processing of high-entropy alloys (HEAs) via laser metal deposition (LMD) is well known. However, it is still difficult to avoid chemical intermixing of the elements between the coating and the substrate. Therefore, the produced coatings do not have the same chemical composition as the HEA feedstock material. Single-layer CrFeCoNi and AlCrFeCoNi HEA coatings were deposited using high-speed laser metal deposition (HS-LMD). Elemental mapping confirmed a good agreement with the chemical composition of the powder feedstock material, and revealed that chemical intermixing was confined to the immediate substrate interface. The coatings are characterized by a homogeneous structure with good substrate bonding. The machining of these coatings via turning is possible. Subsequent diamond smoothing results in a strong decrease in the surface roughness. This study presents a complete manufacturing chain for the production of high-quality HS-LMD HEA coatings. Full article
(This article belongs to the Special Issue High-Entropy Alloy Coatings and Surface Functionalization)
Show Figures

Figure 1

Back to TopTop