Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = HRP-conjugated phage antibody

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2277 KiB  
Article
Development of a Phage-Displayed Nanobody-Based Competitive Immunoassay for the Sensitive Detection of Soybean Agglutinin
by Menghan Zhang, Yulou Qiu, Ajuan You, Siyi Song, Qin Yang, Biao Zhang, Xianshu Fu, Zihong Ye and Xiaoping Yu
Foods 2024, 13(12), 1893; https://doi.org/10.3390/foods13121893 - 16 Jun 2024
Cited by 1 | Viewed by 1735
Abstract
Soybean agglutinin (SBA) is a primary antinutritional factor in soybeans that can inhibit the growth of humans and mammals, disrupt the intestinal environment, and cause pathological changes. Therefore, detecting and monitoring SBA in foods is essential for safeguarding human health. In this paper, [...] Read more.
Soybean agglutinin (SBA) is a primary antinutritional factor in soybeans that can inhibit the growth of humans and mammals, disrupt the intestinal environment, and cause pathological changes. Therefore, detecting and monitoring SBA in foods is essential for safeguarding human health. In this paper, M13 phage-displayed nanobodies against SBA were isolated from a naive nanobody library. An M13 phage-displayed nanobody-based competitive enzyme-linked immunosorbent assay (P-cELISA) was then established for SBA analysis using biotinylated anti-M13 phage antibody (biotin-anti-M13) and streptavidin poly-HRP conjugate (SA-poly-HRP). The biotin-anti-M13@SA-poly-HRP probe can easily amplify the detection signal without the chemical modifications of phage-displayed nanobodies. The established P-cELISA presented a linear detection range of 0.56–250.23 ng/mL and a limit of detection (LOD) of 0.20 ng/mL, which was 12.6-fold more sensitive than the traditional phage-ELISA. Moreover, the developed method showed good specificity for SBA and acceptable recoveries (78.21–121.11%) in spiked wheat flour, albumen powder, and whole milk powder. This study proposes that P-cELISA based on biotin-anti-M13@SA-poly-HRP may provide a convenient and effective strategy for the sensitive detection of SBA. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

17 pages, 4339 KiB  
Article
A Novel Nanobody-Horseradish Peroxidase Fusion Based-Competitive ELISA to Rapidly Detect Avian Corona-Virus-Infectious Bronchitis Virus Antibody in Chicken Serum
by Kui Gu, Zengxu Song, Peng Ma, Ziwei Liao, Ming Yang, Changyu Zhou, Chao Li, Yu Zhao, Hao Li, Xin Yang, Changwei Lei and Hongning Wang
Int. J. Mol. Sci. 2022, 23(14), 7589; https://doi.org/10.3390/ijms23147589 - 8 Jul 2022
Cited by 13 | Viewed by 4099
Abstract
Avian coronavirus-infectious bronchitis virus (AvCoV-IBV) is the causative agent of infectious bronchitis (IB) that has brought great threat and economic losses to the global poultry industry. Rapid and accurate diagnostic methods are very necessary for effective disease monitoring. At the present study, we [...] Read more.
Avian coronavirus-infectious bronchitis virus (AvCoV-IBV) is the causative agent of infectious bronchitis (IB) that has brought great threat and economic losses to the global poultry industry. Rapid and accurate diagnostic methods are very necessary for effective disease monitoring. At the present study, we screened a novel nanobody against IBV-N protein for development of a rapid, simple, sensitive, and specific competitive ELISA for IBV antibody detection in order to enable the assessment of inoculation effect and early warning of disease infection. Using the phage display technology and bio-panning, we obtained 7 specific nanobodies fused with horseradish peroxidase (HRP) which were expressed in culture supernatant of HEK293T cells. Out of which, the nanobody of IBV-N-Nb66-vHRP has highly binding with IBV-N protein and was easily blocked by the IBV positive serums, which was finally employed as an immunoprobe for development of the competitive ELISA (cELISA). In the newly developed cELISA, we reduce the use of enzyme-conjugated secondary antibody, and the time of whole operation process is approximately 1 h. Moreover, the IBV positive serums diluted at 1:1000 can still be detected by the developed cELISA, and it has no cross reactivity with others chicken disease serums including Newcastle disease virus, Fowl adenovirus, Avian Influenza Virus, Infectious bursal disease virus and Hepatitis E virus. The cut-off value of the established cELISA was 36%, and the coefficient of variation of intra- and inter-assay were 0.55–1.65% and 2.58–6.03%, respectively. Compared with the commercial ELISA (IDEXX kit), the agreement rate of two methods was defined as 98% and the kappa value was 0.96, indicating the developed cELISA has high consistency with the commercial ELISA. Taken together, the novel cELISA for IBV antibody detection is a simple, rapid, sensitive, and specific immunoassay, which has the potential to rapidly test IBV antibody contributing to the surveillance and control of the disease. Full article
(This article belongs to the Special Issue New Applications in the Diagnosis and Therapy of Diseases)
Show Figures

Figure 1

15 pages, 2228 KiB  
Article
Nano-Magnetic Immunosensor Based on Staphylococcus Protein A and the Amplification Effect of HRP-Conjugated Phage Antibody
by Xihui Mu, Zhaoyang Tong, Qibin Huang, Bing Liu, Zhiwei Liu, Lanqun Hao, Jinping Zhang, Chuan Gao and Fenwei Wang
Sensors 2015, 15(2), 3896-3910; https://doi.org/10.3390/s150203896 - 9 Feb 2015
Cited by 12 | Viewed by 7351
Abstract
In this research, super-paramagnetic Fe3O4 nanoparticles (magnetic particles) were coated with Staphylococcus protein A (SPA) and coupled with polyclonal antibody (pcAb) to construct magnetic capturing probes, and HRP-conjugated phage antibody was then used as specific detecting probe to design a [...] Read more.
In this research, super-paramagnetic Fe3O4 nanoparticles (magnetic particles) were coated with Staphylococcus protein A (SPA) and coupled with polyclonal antibody (pcAb) to construct magnetic capturing probes, and HRP-conjugated phage antibody was then used as specific detecting probe to design a labeled immunosensor for trace detection of Staphylococcus aureus enterotoxin B (SEB). The linear detection range of the sensor was 0.008~125 µg/L, the regression equation was Y = 0.487X + 1.2 (R = 0.996, N = 15, p < 0.0001), the limit of detection (LOD) was 0.008 µg/L, and the limit of quantification (LOQ) was 0.008 µg/L. HRP-conjugated phage antibody, SPA and magnetic particles can enhance the sensitivity 4-fold, 3-fold and 2.6-fold higher, respectively. Compared with conventional double-antibody sandwich ELISA, the detection sensitivity of the sensor was 31-fold higher resulting from the integrated amplifying effect. The immunosensor integrates the unique advantages of SPA-oriented antibody as magnetic capturing probe, HRP-conjugated phage antibody as detecting probe, magnetic separation immunoassay technique, and several other advanced techniques, so it achieves high sensitivity, specificity and interference-resistance. It is proven to be well suited for analysis of trace SEB in various environmental samples with high recovery rate and reproducibility. Full article
(This article belongs to the Special Issue Immunosensors 2014)
Show Figures

15 pages, 1968 KiB  
Article
Uniform Orientation of Biotinylated Nanobody as an Affinity Binder for Detection of Bacillus thuringiensis (Bt) Cry1Ac Toxin
by Min Li, Min Zhu, Cunzheng Zhang, Xianjin Liu and Yakun Wan
Toxins 2014, 6(12), 3208-3222; https://doi.org/10.3390/toxins6123208 - 2 Dec 2014
Cited by 27 | Viewed by 8691
Abstract
Nanobodies are the smallest natural fragments with useful properties such as high affinity, distinct paratope and high stability, which make them an ideal tool for detecting target antigens. In this study, we generated and characterized nanobodies against the Cry1Ac toxin and applied them [...] Read more.
Nanobodies are the smallest natural fragments with useful properties such as high affinity, distinct paratope and high stability, which make them an ideal tool for detecting target antigens. In this study, we generated and characterized nanobodies against the Cry1Ac toxin and applied them in a biotin-streptavidin based double antibodies (nanobodies) sandwich-ELISA (DAS-ELISA) assay. After immunizing a camel with soluble Cry1Ac toxin, a phage displayed library was constructed to generate Nbs against the Cry1Ac toxin. Through successive rounds of affinity bio-panning, four nanobodies with greatest diversity in CDR3 sequences were obtained. After affinity determination and conjugating to HRP, two nanobodies with high affinity which can recognize different epitopes of the same antigen (Cry1Ac) were selected as capture antibody (Nb61) and detection antibody (Nb44). The capture antibody (Nb61) was biotinylated in vivo for directional immobilization on wells coated with streptavidin matrix. Both results of specificity analysis and thermal stability determination add support for reliability of the following DAS-ELISA with a minimum detection limit of 0.005 μg·mL−1 and a working range 0.010–1.0 μg·mL−1. The linear curve displayed an acceptable correlation coefficient of 0.9976. These results indicated promising applications of nanobodies for detection of Cry1Ac toxin with biotin-streptavidin based DAS-ELISA system. Full article
Show Figures

Figure 1

Back to TopTop