Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = HRµMAS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1617 KiB  
Article
General Guidelines for Sample Preparation Strategies in HR-µMAS NMR-based Metabolomics of Microscopic Specimens
by Covadonga Lucas-Torres, Thierry Bernard, Gaspard Huber, Patrick Berthault, Yusuke Nishiyama, Pancham S. Kandiyal, Bénédicte Elena-Herrmann, Laurent Molin, Florence Solari, Anne-Karine Bouzier-Sore and Alan Wong
Metabolites 2020, 10(2), 54; https://doi.org/10.3390/metabo10020054 - 30 Jan 2020
Cited by 11 | Viewed by 4419
Abstract
The study of the metabolome within tissues, organisms, cells or biofluids can be carried out by several bioanalytical techniques. Among them, nuclear magnetic resonance (NMR) is one of the principal spectroscopic methods. This is due to a sample rotation technique, high-resolution magic angle [...] Read more.
The study of the metabolome within tissues, organisms, cells or biofluids can be carried out by several bioanalytical techniques. Among them, nuclear magnetic resonance (NMR) is one of the principal spectroscopic methods. This is due to a sample rotation technique, high-resolution magic angle spinning (HR-MAS), which targets the analysis of heterogeneous specimens with a bulk sample mass from 5 to 10 mg. Recently, a new approach, high-resolution micro-magic angle spinning (HR-μMAS), has been introduced. It opens, for the first time, the possibility of investigating microscopic specimens (<500 μg) with NMR spectroscopy, strengthening the concept of homogeneous sampling in a heterogeneous specimen. As in all bioanalytical approaches, a clean and reliable sample preparation strategy is a significant component in designing metabolomics (or -omics, in general) studies. The sample preparation for HR-μMAS is consequentially complicated by the μg-scale specimen and has yet to be addressed. This report details the strategies for three specimen types: biofluids, fluid matrices and tissues. It also provides the basis for designing future μMAS NMR studies of microscopic specimens. Full article
(This article belongs to the Special Issue Sample Preparation in Metabolomics)
Show Figures

Figure 1

9 pages, 698 KiB  
Article
Capillary-Inserted Rotor Design for HRµMAS NMR-Based Metabolomics on Mass-Limited Neurospheres
by Nghia Tuan Duong, Masanori Yamato, Masayuki Nakano, Satoshi Kume, Yasuhisa Tamura, Yosky Kataoka, Alan Wong and Yusuke Nishiyama
Molecules 2017, 22(8), 1289; https://doi.org/10.3390/molecules22081289 - 3 Aug 2017
Cited by 5 | Viewed by 5407
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical technique and has been widely used in metabolomics. However, the intrinsic low sensitivity of NMR prevents its applications to systems with limited sample availabilities. In this study, a new experimental approach is presented to [...] Read more.
Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical technique and has been widely used in metabolomics. However, the intrinsic low sensitivity of NMR prevents its applications to systems with limited sample availabilities. In this study, a new experimental approach is presented to analyze mass-scarce samples in limited volumes of less than 300 nL with simple handling. The sample is loaded into the glass capillary, and this capillary is then inserted into a Kel-F rotor. The experimental performance of the capillary-inserted rotor (capillary-insert) is investigated on an isotropic solution of sucrose by the use of a high-resolution micro-sized magic angle spinning (HRµMAS) probe. The acquired NMR signal’s sensitivity to a given sample amount is comparable or even higher in comparison to that recorded by the standard solution NMR probe. More importantly, this capillary-insert coupled with the HRµMAS probe allows in-depth studies of heterogeneous samples as the MAS removes the line broadening caused by the heterogeneity. The NMR analyses of mass-limited cultured neurospheres have been demonstrated, resulting in high quality spectra where numerous metabolites are unambiguously identified. Full article
(This article belongs to the Special Issue Recent Advances in Biomolecular NMR Spectroscopy)
Show Figures

Figure 1

Back to TopTop