Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = HL-1 rat cardiomyocyte cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8650 KiB  
Article
Endoplasmin Is a Hypoxia-Inducible Endoplasmic Reticulum-Derived Cargo of Extracellular Vesicles Released by Cardiac Cell Lines
by Anna Koncz, Lilla Turiák, Krisztina Németh, Dorina Lenzinger, Tünde Bárkai, Péter Lőrincz, Helga Zelenyánszki, Krisztina V. Vukman, Edit I. Buzás and Tamás Visnovitz
Membranes 2023, 13(4), 431; https://doi.org/10.3390/membranes13040431 - 13 Apr 2023
Cited by 12 | Viewed by 3546
Abstract
Cardiomyopathies are leading causes of human mortality. Recent data indicate that the cardiomyocyte-derived extracellular vesicles (EVs) released upon cardiac injury are present in circulation. This paper aimed to analyze EVs released under normal and hypoxic conditions by H9c2 (rat), AC16 (human) and HL1 [...] Read more.
Cardiomyopathies are leading causes of human mortality. Recent data indicate that the cardiomyocyte-derived extracellular vesicles (EVs) released upon cardiac injury are present in circulation. This paper aimed to analyze EVs released under normal and hypoxic conditions by H9c2 (rat), AC16 (human) and HL1 (mouse) cardiac cell lines. Small (sEVs), medium (mEVs) and large EVs (lEVs) were separated from a conditioned medium by a combination of gravity filtration, differential centrifugation and tangential flow filtration. The EVs were characterized by microBCA, SPV lipid assay, nanoparticle tracking analysis, transmission and immunogold electron microscopy, flow cytometry and Western blotting. Proteomic profiles of the EVs were determined. Surprisingly, an endoplasmic reticulum chaperone, endoplasmin (ENPL, grp94 or gp96), was identified in the EV samples, and its association with EVs was validated. The secretion and uptake of ENPL was followed by confocal microscopy using GFP-ENPL fusion protein expressing HL1 cells. We identified ENPL as an internal cargo of cardiomyocyte-derived mEVs and sEVs. Based on our proteomic analysis, its presence in EVs was linked to hypoxia in HL1 and H9c2 cells, and we hypothesize that EV-associated ENPL may have a cardioprotective role by reducing cardiomyocyte ER stress. Full article
(This article belongs to the Special Issue Progress in Extracellular Vesicle (EV) Analysis)
Show Figures

Figure 1

14 pages, 2051 KiB  
Article
Biocompatibility of Blank, Post-Processed and Coated 3D Printed Resin Structures with Electrogenic Cells
by Cacie Hart, Charles M. Didier, Frank Sommerhage and Swaminathan Rajaraman
Biosensors 2020, 10(11), 152; https://doi.org/10.3390/bios10110152 - 22 Oct 2020
Cited by 36 | Viewed by 7087
Abstract
The widespread adaptation of 3D printing in the microfluidic, bioelectronic, and Bio-MEMS communities has been stifled by the lack of investigation into the biocompatibility of commercially available printer resins. By introducing an in-depth post-printing treatment of these resins, their biocompatibility can be dramatically [...] Read more.
The widespread adaptation of 3D printing in the microfluidic, bioelectronic, and Bio-MEMS communities has been stifled by the lack of investigation into the biocompatibility of commercially available printer resins. By introducing an in-depth post-printing treatment of these resins, their biocompatibility can be dramatically improved up to that of a standard cell culture vessel (99.99%). Additionally, encapsulating resins that are less biocompatible with materials that are common constituents in biosensors further enhances the biocompatibility of the material. This investigation provides a clear pathway toward developing fully functional and biocompatible 3D printed biosensor devices, especially for interfacing with electrogenic cells, utilizing benchtop-based microfabrication, and post-processing techniques. Full article
(This article belongs to the Collection 3D-Printed Biosensors)
Show Figures

Figure 1

13 pages, 3242 KiB  
Article
Cytotoxicity of ZnO Nanowire Arrays on Excitable Cells
by Yongchen Wang, Yu Wu, Farhan Quadri, Jordan D. Prox and Liang Guo
Nanomaterials 2017, 7(4), 80; https://doi.org/10.3390/nano7040080 - 7 Apr 2017
Cited by 28 | Viewed by 7620
Abstract
Zinc oxide (ZnO) nanowires have been widely studied for their applications in electronics, optics, and catalysts. Their semiconducting, piezoelectric, fluorescent, and antibacterial properties have also attracted broad interest in their biomedical applications. Thus, it is imperative to evaluate the biosafety of ZnO nanowires [...] Read more.
Zinc oxide (ZnO) nanowires have been widely studied for their applications in electronics, optics, and catalysts. Their semiconducting, piezoelectric, fluorescent, and antibacterial properties have also attracted broad interest in their biomedical applications. Thus, it is imperative to evaluate the biosafety of ZnO nanowires and their biological effects. In this study, the cellular level biological effects of ZnO nanowire arrays are specifically tested on three types of excitable cells, including NG108-15 neuronal cell line, HL-1 cardiac muscle cell line, and neonatal rat cardiomyocytes. Vertically aligned and densely packed ZnO nanowire arrays are synthesized using a solution-based method and used as a substrate for cell culture. The metabolism levels of all three types of cells cultured on ZnO nanowire arrays are studied using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays of a full factorial design. Under the studied settings, the results show statistically significant inhibitory effects of ZnO nanowire arrays on the metabolism of NG108-15 and HL-1 cells in comparison to gold, glass, and polystyrene substrates, and on the metabolism of cardiomyocytes in comparison to gold substrate. Full article
(This article belongs to the Special Issue Nanoparticle-Mediated Cell and Tissue Stimulation)
Show Figures

Figure 1

Back to TopTop