Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = HEVC and AVC comparison

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 18910 KB  
Article
Performance Comparison of VVC, AV1, HEVC, and AVC for High Resolutions
by Miroslav Uhrina, Lukas Sevcik, Juraj Bienik and Lenka Smatanova
Electronics 2024, 13(5), 953; https://doi.org/10.3390/electronics13050953 - 1 Mar 2024
Cited by 14 | Viewed by 22319
Abstract
Over the years, there has been growing interest in multimedia services, especially in the video domain, where firms and subscribers require higher resolutions, framerates, and sampling precision. This results in a huge amount of data that needs to be processed, stored, and transmitted. [...] Read more.
Over the years, there has been growing interest in multimedia services, especially in the video domain, where firms and subscribers require higher resolutions, framerates, and sampling precision. This results in a huge amount of data that needs to be processed, stored, and transmitted. As a result, researchers face the challenge of developing new compression standards that can reduce the amount of data while maintaining the same quality. In this paper, the compression performance of the latest and most commonly used video codecs, namely H.266/VVC, AV1, H265/HEVC, and H.264/AVC was examined. The test set included seven sequences of various content at 8K, Ultra HD (UHD), and Full HD (FHD) resolutions, encoded to bitrates ranging from 1 to 15 Mbps for FHD and UHD resolutions and from 5 to 50 Mbps for 8K resolution. Objective quality metrics, such as peak signal-to-noise ratio (PSNR), the structural similarity index (SSIM), and video multi-method assessment fusion (VMAF) were used to measure codec performance. The results showed that H.266/VVC outperformed all other codecs, namely H.264/AVC, H.265/HEVC, and AV1, in terms of the Bjøntegaard delta (BD) model. The average bitrate savings were approximately 78% for H.266/VVC, 63% for AV1, and 53% for H.265/HEVC relative to H.264/AVC, 59% for H.266/VVC and 22% for AV1 compared to H.264/AVC, and 46% for H.266/VVC relative to AV1 (all for 8K resolution). The results also showed that codec performance varied depending on resolution, with higher resolutions showing greater efficiency for newly developed codecs, such as H.266/VVC and AV1. This confirms the fact that the H.266/VVC and AV1 codecs were primarily developed for videos at high resolutions, such as 8K and/or UHD. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

17 pages, 4019 KB  
Article
QoE-Based Performance Comparison of AVC, HEVC, and VP9 on Mobile Devices with Additional Influencing Factors
by Omer Nawaz, Markus Fiedler and Siamak Khatibi
Electronics 2024, 13(2), 329; https://doi.org/10.3390/electronics13020329 - 12 Jan 2024
Cited by 6 | Viewed by 2834
Abstract
While current video quality assessment research predominantly revolves around resolutions of 4 K and beyond, targeted at ultra high-definition (UHD) displays, effective video quality for mobile video streaming remains primarily within the range of 480 p to 1080 p. In this study, we [...] Read more.
While current video quality assessment research predominantly revolves around resolutions of 4 K and beyond, targeted at ultra high-definition (UHD) displays, effective video quality for mobile video streaming remains primarily within the range of 480 p to 1080 p. In this study, we conducted a comparative analysis of the quality of experience (QoE) for widely implemented video codecs on mobile devices, specifically Advanced Video Coding (AVC), its successor High-Efficiency Video Coding (HEVC), and Google’s VP9. Our choice of 720 p video sequences from a newly developed database, all with identical bitrates, aimed to maintain a manageable subjective assessment duration, capped at 35–40 min. To mimic real-time network conditions, we generated stimuli by streaming original video clips over a controlled emulated setup, subjecting them to eight different packet-loss scenarios. We evaluated the quality and structural similarity of the distorted video clips using objective metrics, including the Video Quality Metric (VQM), Peak Signal-to-Noise Ratio (PSNR), Video Multi-Method Assessment Fusion (VMAF), and Multi-Scale Structural Similarity Index (MS-SSIM). Subsequently, we collected subjective ratings through a custom mobile application developed for Android devices. Our findings revealed that VMAF accurately represented the degradation in video quality compared to other metrics. Moreover, in most cases, HEVC exhibited an advantage over both AVC and VP9 under low packet-loss scenarios. However, it is noteworthy that in our test cases, AVC outperformed HEVC and VP9 in scenarios with high packet loss, based on both subjective and objective assessments. Our observations further indicate that user preferences for the presented content contributed to video quality ratings, emphasizing the importance of additional factors that influence the perceived video quality of end users. Full article
Show Figures

Figure 1

26 pages, 5311 KB  
Article
Effects on Long-Range Dependence and Multifractality in Temporal Resolution Recovery of High Frame Rate HEVC Compressed Content
by Ana Gavrovska
Appl. Sci. 2023, 13(17), 9851; https://doi.org/10.3390/app13179851 - 31 Aug 2023
Cited by 2 | Viewed by 1661
Abstract
In recent years, video research has dealt with high-frame-rate (HFR) content. Even though low or standard frame rates (SFR) that correspond to values less than 60 frames per second (fps) are still covered. Temporal conversions are applied accompanied with video compression and, thus, [...] Read more.
In recent years, video research has dealt with high-frame-rate (HFR) content. Even though low or standard frame rates (SFR) that correspond to values less than 60 frames per second (fps) are still covered. Temporal conversions are applied accompanied with video compression and, thus, it is of importance to observe and detect possible effects of typical compressed video manipulations over HFR (60 fps+) content. This paper addresses ultra-high-definition HFR content via Hurst index as a measure of long-range dependency (LRD), as well as using Legendre multifractal spectrum, having in mind standard high-efficiency video coding (HEVC) format and temporal resolution recovery (TRR), meaning frame upconversion after temporal filtering of compressed content. LRD and multifractals-based studies using video traces have been performed for characterization of compressed video, and they are mostly presented for advanced video coding (AVC). Moreover, recent studies have shown that it is possible to perform TRR detection for SFR data compressed with standards developed before HEVC. In order to address HEVC HFR data, video traces are analyzed using LRD and multifractals, and a novel TRR detection model is proposed based on a weighted k-nearest neighbors (WkNN) classifier and multifractals. Firstly, HFR video traces are gathered using six constant rate factors (crfs), where Hurst indices and multifractal spectra are calculated. According to TRR and original spectra comparison, a novel detection model is proposed based on new multifractal features. Also, five-fold cross-validation using the proposed TRR detection model gave high-accuracy results of around 98%. The obtained results show the effects on LRD and multifractality and their significance in understanding changes in typical video manipulation. The proposed model can be valuable in video credibility and quality assessments of HFR HEVC compressed content. Full article
(This article belongs to the Special Issue Cryptography and Information Security)
Show Figures

Figure 1

17 pages, 2932 KB  
Article
A Method of Codec Comparison and Selection for Good Quality Video Transmission Over Limited-Bandwidth Networks
by Janusz Klink
Sensors 2021, 21(13), 4589; https://doi.org/10.3390/s21134589 - 4 Jul 2021
Cited by 12 | Viewed by 4253
Abstract
Finding a proper balance between video quality and the required bandwidth is an important issue, especially in networks of limited capacity. The problem of comparing the efficiency of video codecs and choosing the most suitable one in a specific situation has become very [...] Read more.
Finding a proper balance between video quality and the required bandwidth is an important issue, especially in networks of limited capacity. The problem of comparing the efficiency of video codecs and choosing the most suitable one in a specific situation has become very important. This paper proposes a method of comparing video codecs while also taking into account objective quality assessment metrics. The author shows the process of preparing video footage, assessing its quality, determining the rate–distortion curves, and calculating the bitrate saving for pairs of examined codecs. Thanks to the use of the spline interpolation method, the obtained results are better than those previously presented in the literature, and more resistant to the quality metric used. Full article
Show Figures

Figure 1

Back to TopTop