Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Gymnodiptychus dybowskii

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2990 KiB  
Article
Analyses of Morphological Differences between Geographically Distinct Populations of Gymnodiptychus dybowskii
by Linghui Hu, Na Yao, Chengxin Wang, Liting Yang, Gulden Serekbol, Bin Huo, Xuelian Qiu, Fangze Zi, Yong Song and Shengao Chen
Water 2024, 16(5), 755; https://doi.org/10.3390/w16050755 - 1 Mar 2024
Cited by 4 | Viewed by 1601
Abstract
To study the morphological differences between and the evolutionary mechanisms driving the differentiation of geographically distinct populations of Gymnodiptychus dybowskii, 158 fish were collected from the Turks River and the Manas River in Xinjiang from 2020 to 2021 with the approval of [...] Read more.
To study the morphological differences between and the evolutionary mechanisms driving the differentiation of geographically distinct populations of Gymnodiptychus dybowskii, 158 fish were collected from the Turks River and the Manas River in Xinjiang from 2020 to 2021 with the approval of the Academic Ethics Committee. The morphological characteristics of the fish were assessed using classical fish ecology methods such as traditional morphometric measurements and the framework approach. The results showed that the morphological characteristics of the populations in the Turks River and Manas River were significantly different; a one-way ANOVA revealed 22 highly significant differences (p < 0.01) and 1 significant difference (p < 0.05) among the 33 morphological traits of the observed populations, and a principal component analysis revealed that there was no overlap between the two populations of G. dybowskii. The main characteristics associated with principle component 1 were the terminus of the dorsal fin to the ventral origin of the caudal fin (D—F), the dorsal origin of the caudal fin to the origin of the anal fin (E—H), and the insertion of the pectoral fin to the terminus of the pectoral fin (J—K); the main factors associated with principal component 2 were the body height (BD), the terminus of the dorsal fin to the insertion of the pelvic fin (D—I), the caudal peduncle height (CPH), and the tip of the snout to the last end of the frontal maxilla (A—B); and the main traits associated with principle component 3 were the terminus of the anal fin to the origin of the anal fin (G—H), the body width (BW), the insertion of the pelvic fin to the terminus of the pelvic (I—L), the insertion of the pectoral fin to the terminus of the pectoral fin (J—K), and the insertion of the pelvic fin to the insertion of the pectoral fin (I—J). An OPLS-DA revealed that the two populations could be wholly separated and that the intergroup growth traits of the Manas River population were different and significantly greater than those of the Turks River population. The discriminant functions of the Turks River and Manas River populations of G. dybowskii were as follows: YT = −432.033 + 1787.748X1 + 826.517X2 + 249.002X3 + 1183.050X4 + 554.934X5 + 999.296X6 + 627.428X7; YM = −569.819 + 2041.044X1 + 344.942X2 + 333.737X3 + 940.512X4 + 348.222X5 + 1167.770X6 + 1015.904X7. According to a coefficient of variation analysis, a total of nine traits, namely, EI/BL, C-D/BL, E-F/BL, F-H/BL, H-I/BL, C-J/BL, D-I/BL, D-H/BL, and D-F/BL, had a CD > 1.28, indicating that the differences in these nine traits had reached the subspecies level. The results showed that G. dybowskii significantly differed between the two geographically distinct populations in the Turks River and the Manas River and have differentiated to the subspecies level. This study provides a basis for a better investigation of the population structure of highland endemic fishes and the mechanisms by which they diverged and lays a foundation for developing and utilizing germplasm resources from endemic fishes in Xinjiang. Full article
(This article belongs to the Special Issue Aquatic Ecosystems: Biodiversity and Conservation)
Show Figures

Figure 1

14 pages, 1524 KiB  
Article
Population Genomic Analysis of Two Endemic Schizothoracins Reveals Their Genetic Differences and Underlying Selection Associated with Altitude and Temperature
by Tianyan Yang, Wei Meng and Baocheng Guo
Animals 2020, 10(3), 447; https://doi.org/10.3390/ani10030447 - 7 Mar 2020
Cited by 5 | Viewed by 3459
Abstract
Schizothoracins are a group of cyprinid fishes distributed throughout the Qinghai–Tibet Plateau, which can be classified in three grades: primitive, specialised and highly specialised according to adaptation ability to plateau environments. As the only specialised schizothoracins in Xinjiang, China, Diptychus maculates and Gymnodiptychus [...] Read more.
Schizothoracins are a group of cyprinid fishes distributed throughout the Qinghai–Tibet Plateau, which can be classified in three grades: primitive, specialised and highly specialised according to adaptation ability to plateau environments. As the only specialised schizothoracins in Xinjiang, China, Diptychus maculates and Gymnodiptychus dybowskii are ideal materials for adaptive evolution research. Based on single-nucleotide polymorphism (SNP) loci detected by specific-locus amplified fragment (SLAF) technology, the genome-wide genetic diversities of these two species from nine sites in Xinjiang were evaluated. D.maculates in the Muzat River (BM) and G. dybowskii in the Kaidu River (LKG) presented the lowest genetic diversity levels, whereas D. maculates in the Kumarik River (BK) and G.dybowskii in the Kashi River (LK) were just the opposite. Cluster and principal component analysis demonstrated a distant genetic affinity between D. maculates in the Tashkurgan River (BT) and other populations. Outlier SNP loci were discovered both in D. maculates and G. dybowskii. The coalescent Bayenv and latent factor mixed model (LFMM) methods showed that a total of thirteen and eighteen SNPs in D. maculates were associated with altitude and temperature gradient, respectively. No intersection was revealed in G. dybowskii. The results indicated that D. maculates was subject to much greater divergent selection pressure. A strong signal of isolation-by-distance (IBD) was detected across D. maculates (Mantel test, rs = 0.65; p = 0.05), indicating an evident geographical isolation in the Tarim River. Isolation-by-environment (IBE) analysis implied that temperature and altitude selections were more intensive in D. maculates, with greater environmental variation resulting in weak gene flow. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

Back to TopTop