Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Glutamicibacter endophyticus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5634 KiB  
Article
Association Analysis of the Genomic and Functional Characteristics of Halotolerant Glutamicibacter endophyticus J2-5-19 from the Rhizosphere of Suaeda salsa
by Longhao Sun, Shanshan Sun, Tianyang Liu, Xinmin Lei, Ruiqi Liu, Junyi Zhang, Shanshan Dai, Jing Li and Yanqin Ding
Microorganisms 2025, 13(1), 208; https://doi.org/10.3390/microorganisms13010208 - 18 Jan 2025
Cited by 1 | Viewed by 1600
Abstract
Halotolerant plant growth-promoting bacteria (HT-PGPB) have attracted considerable attention for their significant potential in mitigating salt stress in crops. However, the current exploration and development of HT-PGPB remain insufficient to meet the increasing demands of agriculture. In this study, an HT-PGPB isolated from [...] Read more.
Halotolerant plant growth-promoting bacteria (HT-PGPB) have attracted considerable attention for their significant potential in mitigating salt stress in crops. However, the current exploration and development of HT-PGPB remain insufficient to meet the increasing demands of agriculture. In this study, an HT-PGPB isolated from coastal saline-alkali soil in the Yellow River Delta was identified as Glutamicibacter endophyticus J2-5-19. The strain was capable of growing in media with up to 13% NaCl and producing proteases, siderophores, and the plant hormone IAA. Under 4‰ salt stress, inoculation with strain J2-5-19 significantly increased the wheat seed germination rate from 37.5% to 95%, enhanced the dry weight of maize seedlings by 41.92%, and notably improved the development of maize root systems. Moreover, this work presented the first whole-genome of Glutamicibacter endophyticus, revealing that G. endophyticus J2-5-19 resisted salt stress by expelling sodium ions and taking up potassium ions through Na+/H+ antiporters and potassium uptake proteins, while also accumulating compatible solutes such as betaine, proline, and trehalose. Additionally, the genome contained multiple key plant growth-promoting genes, including those involved in IAA biosynthesis, siderophore production, and GABA synthesis. The findings provide a theoretical foundation and microbial resources for the development of specialized microbial inoculants for saline-alkali soils. Full article
(This article belongs to the Special Issue Microorganisms in Agriculture)
Show Figures

Figure 1

14 pages, 10213 KiB  
Article
Enzyme Profiling and Identification of Endophytic and Rhizospheric Bacteria Isolated from Arthrocnemum macrostachyum
by Tooba Khan, Othman M. Alzahrani, Muhammad Sohail, Khwaja Ali Hasan, Salman Gulzar, Ammad Ur Rehman, Samy F. Mahmoud, Amal S. Alswat and Shebl Abdallah Abdel-Gawad
Microorganisms 2022, 10(11), 2112; https://doi.org/10.3390/microorganisms10112112 - 26 Oct 2022
Cited by 18 | Viewed by 2914
Abstract
Endophytic and rhizospheric bacteria isolated from halophytic plants support their host to survive in hyper-saline soil. These bacteria are also known to produce various enzymes with potential industrial applications. In this study, the endophytic and rhizospheric bacteria were isolated from Arthrocnemum macrostachyum collected [...] Read more.
Endophytic and rhizospheric bacteria isolated from halophytic plants support their host to survive in hyper-saline soil. These bacteria are also known to produce various enzymes with potential industrial applications. In this study, the endophytic and rhizospheric bacteria were isolated from Arthrocnemum macrostachyum collected from Karachi, Pakistan, and their ability to produce various extracellular enzymes was assessed using commercial and natural substrates. In total, 11 bacterial strains were isolated (four endophytic; seven rhizospheric). Bacillus was found to be the most abundant genus (73%), followed by Glutamicibacter (27%). The isolates including Glutamicibacter endophyticus and Bacillus licheniformis are reported for the first time from A. macrostachyum. All of the isolates were capable of producing at least two of the five industrially important hydrolytic enzymes tested, i.e., xylanase, cellulase, amylase, pectinase, and lipase. Lipase production was found to be highest among the isolates, i.e., up to 18 IU mL−1. Although most of the isolates could grow at a wide range of temperatures (4–55 °C), pH (1–11), and salt concentrations (2–12%), under extreme conditions, very little growth was observed and the optimal growth was recorded between 2% and 6% NaCl, 25 and 45 °C, and 7 and 9 pH. Our results suggest that these isolates could be potential producers of enzymes with several biotechnological applications. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

Back to TopTop