Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = GDP/GTP carrier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1700 KB  
Article
Preparation of Green Tea Polyphenol-Loaded Diacylglycerol Nanostructured Lipid Carrier Hydrogels and Their Activities Related to Skin Protection
by Zhini Zhu, Qiu Xia, Xinxia Zhan, Wenyuan Li, Xuan He, Bo Wang, Qizhi Zhou, Jian Huang and Yong Ye
Materials 2024, 17(24), 6227; https://doi.org/10.3390/ma17246227 - 20 Dec 2024
Cited by 1 | Viewed by 1361
Abstract
Diacylglycerol (DAG) is a functional oil but is rarely used in the cosmetic industry because low solubility, susceptibility to leakage and low viscosity to skin are still the main hurdles. A novel diacylglycerol nanostructured lipid carrier hydrogel (GTP-DAG-NLC-GEL) loaded with green tea polyphenol [...] Read more.
Diacylglycerol (DAG) is a functional oil but is rarely used in the cosmetic industry because low solubility, susceptibility to leakage and low viscosity to skin are still the main hurdles. A novel diacylglycerol nanostructured lipid carrier hydrogel (GTP-DAG-NLC-GEL) loaded with green tea polyphenol (GTP) was designed and successfully prepared to broaden DAG’s application in cosmetics, which significantly improved GTP stability and skin stickiness of DAG. The results showed that DAG-NLC-GEL had good viscosity, which was 980 Pa·s when the shear rate was 5 rpm, and its viscosity decreased quickly with the increase in shear rate, making it easily expand on skin. Meanwhile, the encapsulation rate and drug loading of GTP in GDP-DAG-NLC-GEL reached 86.7% and 2.6%, respectively, and the DPPH free radicals scavenging rate and inhibition rate of the advanced glycation end-products (AGEs) were 85.46% and 89.72%, respectively, which indicate that GTP-DAG-NLC-GEL has significant skin sunscreen, antioxidant and anti-glycation activities. The GTP-loaded nanostructured lipid carrier hydrogel can be deemed to have great prospects for skin protection in cosmetics. Full article
Show Figures

Figure 1

16 pages, 3840 KB  
Article
Citrate Regulates the Saccharomyces cerevisiae Mitochondrial GDP/GTP Carrier (Ggc1p) by Triggering Unidirectional Transport of GTP
by Roberta Seccia, Silvia De Santis, Maria A. Di Noia, Ferdinando Palmieri, Daniela V. Miniero, Raffaele Marmo, Eleonora Paradies, Antonella Santoro, Ciro L. Pierri, Luigi Palmieri, Carlo M. T. Marobbio and Angelo Vozza
J. Fungi 2022, 8(8), 795; https://doi.org/10.3390/jof8080795 - 29 Jul 2022
Cited by 4 | Viewed by 3092
Abstract
The yeast mitochondrial transport of GTP and GDP is mediated by Ggc1p, a member of the mitochondrial carrier family. The physiological role of Ggc1p in S. cerevisiae is probably to transport GTP into mitochondria in exchange for GDP generated in the matrix. ggc1 [...] Read more.
The yeast mitochondrial transport of GTP and GDP is mediated by Ggc1p, a member of the mitochondrial carrier family. The physiological role of Ggc1p in S. cerevisiae is probably to transport GTP into mitochondria in exchange for GDP generated in the matrix. ggc1Δ cells exhibit lower levels of GTP and increased levels of GDP in mitochondria, are unable to grow on nonfermentable substrates and lose mtDNA. Because in yeast, succinyl-CoA ligase produces ATP instead of GTP, and the mitochondrial nucleoside diphosphate kinase is localized in the intermembrane space, Ggc1p is the only supplier of mitochondrial GTP required for the maturation of proteins containing Fe-S clusters, such as aconitase [4Fe-4S] and ferredoxin [2Fe-2S]. In this work, it was demonstrated that citrate is a regulator of purified and reconstituted Ggc1p by trans-activating unidirectional transport of GTP across the proteoliposomal membrane. It was also shown that the binding site of Ggc1p for citrate is different from the binding site for the substrate GTP. It is proposed that the citrate-induced GTP uniport (CIGU) mediated by Ggc1p is involved in the homeostasis of the guanine nucleotide pool in the mitochondrial matrix. Full article
(This article belongs to the Special Issue Fungi Nutrient Transportation)
Show Figures

Figure 1

17 pages, 3799 KB  
Article
Evidence for Non-Essential Salt Bridges in the M-Gates of Mitochondrial Carrier Proteins
by Daniela Valeria Miniero, Magnus Monné, Maria Antonietta Di Noia, Luigi Palmieri and Ferdinando Palmieri
Int. J. Mol. Sci. 2022, 23(9), 5060; https://doi.org/10.3390/ijms23095060 - 2 May 2022
Cited by 9 | Viewed by 2773
Abstract
Mitochondrial carriers, which transport metabolites, nucleotides, and cofactors across the mitochondrial inner membrane, have six transmembrane α-helices enclosing a translocation pore with a central substrate binding site whose access is controlled by a cytoplasmic and a matrix gate (M-gate). The salt bridges formed [...] Read more.
Mitochondrial carriers, which transport metabolites, nucleotides, and cofactors across the mitochondrial inner membrane, have six transmembrane α-helices enclosing a translocation pore with a central substrate binding site whose access is controlled by a cytoplasmic and a matrix gate (M-gate). The salt bridges formed by the three PX[DE]XX[RK] motifs located on the odd-numbered transmembrane α-helices greatly contribute to closing the M-gate. We have measured the transport rates of cysteine mutants of the charged residue positions in the PX[DE]XX[RK] motifs of the bovine oxoglutarate carrier, the yeast GTP/GDP carrier, and the yeast NAD+ transporter, which all lack one of these charged residues. Most single substitutions, including those of the non-charged and unpaired charged residues, completely inactivated transport. Double mutations of charged pairs showed that all three carriers contain salt bridges non-essential for activity. Two double substitutions of these non-essential charge pairs exhibited higher transport rates than their corresponding single mutants, whereas swapping the charged residues in these positions did not increase activity. The results demonstrate that some of the residues in the charged residue positions of the PX[DE]XX[KR] motifs are important for reasons other than forming salt bridges, probably for playing specific roles related to the substrate interaction-mediated conformational changes leading to the M-gate opening/closing. Full article
(This article belongs to the Special Issue Transport Mechanisms of Mitochondrial Membrane Proteins)
Show Figures

Figure 1

18 pages, 6696 KB  
Review
The Protein Phosphatase PP2A Plays Multiple Roles in Plant Development by Regulation of Vesicle Traffic—Facts and Questions
by Csaba Máthé, Márta M-Hamvas, Csongor Freytag and Tamás Garda
Int. J. Mol. Sci. 2021, 22(2), 975; https://doi.org/10.3390/ijms22020975 - 19 Jan 2021
Cited by 19 | Viewed by 6351
Abstract
The protein phosphatase PP2A is essential for the control of integrated eukaryotic cell functioning. Several cellular and developmental events, e.g., plant growth regulator (PGR) mediated signaling pathways are regulated by reversible phosphorylation of vesicle traffic proteins. Reviewing present knowledge on the relevant role [...] Read more.
The protein phosphatase PP2A is essential for the control of integrated eukaryotic cell functioning. Several cellular and developmental events, e.g., plant growth regulator (PGR) mediated signaling pathways are regulated by reversible phosphorylation of vesicle traffic proteins. Reviewing present knowledge on the relevant role of PP2A is timely. We discuss three aspects: (1) PP2A regulates microtubule-mediated vesicle delivery during cell plate assembly. PP2A dephosphorylates members of the microtubule associated protein family MAP65, promoting their binding to microtubules. Regulation of phosphatase activity leads to changes in microtubule organization, which affects vesicle traffic towards cell plate and vesicle fusion to build the new cell wall between dividing cells. (2) PP2A-mediated inhibition of target of rapamycin complex (TORC) dependent signaling pathways contributes to autophagy and this has possible connections to the brassinosteroid signaling pathway. (3) Transcytosis of vesicles transporting PIN auxin efflux carriers. PP2A regulates vesicle localization and recycling of PINs related to GNOM (a GTP–GDP exchange factor) mediated pathways. The proper intracellular traffic of PINs is essential for auxin distribution in the plant body, thus in whole plant development. Overall, PP2A has essential roles in membrane interactions of plant cell and it is crucial for plant development and stress responses. Full article
(This article belongs to the Special Issue Plant Cell and Organism Development 2.0)
Show Figures

Figure 1

Back to TopTop