Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = FireCCILT10

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8604 KiB  
Article
Analysis of Trends in the FireCCI Global Long Term Burned Area Product (1982–2018)
by Gonzalo Otón, José Miguel C. Pereira, João M. N. Silva and Emilio Chuvieco
Fire 2021, 4(4), 74; https://doi.org/10.3390/fire4040074 - 17 Oct 2021
Cited by 19 | Viewed by 4941
Abstract
We present an analysis of the spatio-temporal trends derived from long-term burned area (BA) data series. Two global BA products were included in our analysis, the FireCCI51 (2001–2019) and the FireCCILT11 (1982–2018) datasets. The former was generated from Moderate Resolution Imaging Spectroradiometer (MODIS) [...] Read more.
We present an analysis of the spatio-temporal trends derived from long-term burned area (BA) data series. Two global BA products were included in our analysis, the FireCCI51 (2001–2019) and the FireCCILT11 (1982–2018) datasets. The former was generated from Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m reflectance data, guided by 1 km active fires. The FireCCILT11 dataset was generated from Land Long-Term Data Record data (0.05°), which provides a consistent time series for Advanced Very High Resolution Radiometer images, acquired from the NOAA satellite series. FireCCILT11 is the longest time series of a BA product currently available, making it possible to carry out temporal analysis of long-term trends. Both products were developed under the FireCCI project of the European Space Agency. The two datasets were pre-processed to correct for temporal autocorrelation. Unburnable areas were removed and the lack of the FireCCILT11 data in 1994 was examined to evaluate the impact of this gap on the BA trends. An analysis and comparison between the two BA products was performed using a contextual approach. Results of the contextual Mann-Kendall analysis identified significant trends in both datasets, with very different regional values. The long-term series presented larger clusters than the short-term ones. Africa displayed significant decreasing trends in the short-term, and increasing trends in the long-term data series, except in the east. In the long-term series, Eastern Africa, boreal regions, Central Asia and South Australia showed large BA decrease clusters, and Western and Central Africa, South America, USA and North Australia presented BA increase clusters. Full article
Show Figures

Figure 1

19 pages, 7248 KiB  
Article
Global Detection of Long-Term (1982–2017) Burned Area with AVHRR-LTDR Data
by Gonzalo Otón, Rubén Ramo, Joshua Lizundia-Loiola and Emilio Chuvieco
Remote Sens. 2019, 11(18), 2079; https://doi.org/10.3390/rs11182079 - 5 Sep 2019
Cited by 42 | Viewed by 6029 | Correction
Abstract
This paper presents the first global burned area (BA) product derived from the land long term data record (LTDR), a long-term 0.05-degree resolution dataset generated from advanced very high resolution radiometer (AVHRR) images. Daily images were combined in monthly composites using the maximum [...] Read more.
This paper presents the first global burned area (BA) product derived from the land long term data record (LTDR), a long-term 0.05-degree resolution dataset generated from advanced very high resolution radiometer (AVHRR) images. Daily images were combined in monthly composites using the maximum temperature criterion to enhance the burned signal and eliminate clouds and artifacts. A synthetic BA index was created to improve the detection of the BA signal. This index included red and near infrared reflectance, surface temperature, two spectral indices, and their temporal differences. Monthly models were generated using the random forest classifier, using the twelve monthly composites of each year as the predictors. Training data were obtained from the NASA MCD64A1 collection 6 product (500 m spatial resolution) for eight years of the overlapping period (2001–2017). This included some years with low and high fire occurrence. Results were tested with the remaining eight years. Pixels classified as burned were converted to burned proportions using the MCD64A1 product. The final product (named FireCCILT10) estimated BA in 0.05-degree cells for the 1982 to 2017 period (excluding 1994, due to input data gaps). This product is the longest global BA currently available, extending almost 20 years back from the existing NASA and ESA BA products. BA estimations from the FireCCILT10 product were compared with those from the MCD64A1 product for continental regions, obtaining high correlation values (r2 > 0.9), with better agreement in tropical regions rather than boreal regions. The annual average of BA of the time series was 3.12 Mkm2. Tropical Africa had the highest proportion of burnings, accounting for 74.37% of global BA. Spatial trends were found to be similar to existing global BA products, but temporal trends showed unstable annual variations, most likely linked to the changes in the AVHRR sensor and orbital decays of the NOAA satellites. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

Back to TopTop