Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = Ferula huber-morathii

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 9363 KiB  
Article
Sesquiterpene Coumarin Ethers with Selective Cytotoxic Activities from the Roots of Ferula huber-morathii Peşmen (Apiaceae) and Unequivocal Determination of the Absolute Stereochemistry of Samarcandin
by Fatma Memnune Eruçar, Fadıl Kaan Kuran, Gülsüm Altıparmak Ülbegi, Süheyla Özbey, Şule Nur Karavuş, Gülşah Gamze Arcan, Seçil Yazıcı Tütüniş, Nur Tan, Pınar Aksoy Sağırlı and Mahmut Miski
Pharmaceuticals 2023, 16(6), 792; https://doi.org/10.3390/ph16060792 - 26 May 2023
Cited by 14 | Viewed by 3186
Abstract
Ancient physicians frequently used the resin of Ferula species to treat cancer. Today, some folkloric recipes used for cancer treatment also contain the resin of Ferula species. The dichloromethane extract of the roots of Ferula huber-morathii exhibited cytotoxic activities against COLO 205 (colon), [...] Read more.
Ancient physicians frequently used the resin of Ferula species to treat cancer. Today, some folkloric recipes used for cancer treatment also contain the resin of Ferula species. The dichloromethane extract of the roots of Ferula huber-morathii exhibited cytotoxic activities against COLO 205 (colon), K-562 (lymphoblast), and MCF-7 (breast) cancer cell lines (IC50 = 52 µg/mL, 72 µg/mL, and 20 µg/mL, respectively). Fifteen sesquiterpene coumarin ethers with cytotoxic activity were isolated from the dichloromethane extract of the roots of F. huber-morathii using bioactivity-directed isolation studies. Extensive spectroscopic analyses and chemical transformations have elucidated the structures of these sesquiterpene coumarin ethers as conferone (1), conferol (2), feselol (3), badrakemone (4), mogoltadone (5), farnesiferol A (6), farnesiferol A acetate (7), gummosin (8), ferukrin (9), ferukrin acetate (10), deacetylkellerin (11), kellerin (12), samarcandone (13), samarcandin (14), and samarcandin acetate (15). The absolute configuration of samarcandin (14) was unequivocally determined by the X-ray crystallographic analysis of the semi-synthetic (R)-MTPA ester of samarcandin (24). Conferol (2) and mogoltadone (5) were found to be the most potent cytotoxic compounds against all three cancer cell lines; furthermore, these compounds exhibit low cytotoxic activity against the non-cancerous human umbilical vein epithelial cells (HUVEC) cell line. Investigation of the biological activity mechanisms of mogoltadone (5) revealed that while suppressing the levels of Bcl-XL and procaspase-3 in the COLO 205 cancer cell line, it did not have a significant effect on the Bcl-XL, caspase-3, and β-catenin protein levels of the HUVEC cell line, which may explain the cytotoxic selectivity of mogoltadone (5) on cancer cell lines. Full article
Show Figures

Graphical abstract

Back to TopTop