Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Fallopia japonica root extract

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5139 KB  
Article
Fallopia japonica Root Extract Ameliorates Ovalbumin-Induced Airway Inflammation in a CARAS Mouse Model by Modulating the IL-33/TSLP/NF-κB Signaling Pathway
by Juan Jin, Yan Jing Fan, Thi Van Nguyen, Zhen Nan Yu, Chang Ho Song, So-Yong Lee, Hee Soon Shin and Ok Hee Chai
Int. J. Mol. Sci. 2023, 24(15), 12514; https://doi.org/10.3390/ijms241512514 - 7 Aug 2023
Cited by 20 | Viewed by 3185
Abstract
Fallopia japonica (Asian knotweed) is a medicinal herb traditionally used to treat inflammation, among other conditions. However, the effects of F. japonica root extract (FJE) on airway inflammation associated with combined allergic rhinitis and asthma (CARAS) and the related mechanisms have not been [...] Read more.
Fallopia japonica (Asian knotweed) is a medicinal herb traditionally used to treat inflammation, among other conditions. However, the effects of F. japonica root extract (FJE) on airway inflammation associated with combined allergic rhinitis and asthma (CARAS) and the related mechanisms have not been investigated. This study examined the effect of FJE against CARAS in an ovalbumin (OVA)-induced CARAS mouse model. Six-week-old male BALB/c mice were randomly segregated into six groups. Mice were sensitized intraperitoneally with OVA on days 1, 8, and 15, and administered saline, Dexamethasone (1.5 mg/kg), or FJE (50, 100, or 200 mg/kg) once a day for 16 days. Nasal symptoms, inflammatory cells, OVA-specific immunoglobulins, cytokine production, mast cell activation, and nasal histopathology were assessed. Administration of FJE down-regulated OVA-specific IgE and up-regulated OVA-specific IgG2a in serum. FJE reduced the production of T helper (Th) type 2 cytokines, and the Th1 cytokine levels were enhanced in nasal and bronchoalveolar lavage fluid. Moreover, FJE positively regulated allergic responses by reducing the accumulation of inflammatory cells, improving nasal and lung histopathological characteristics, and inhibiting inflammation-associated cytokines. FJE positively modulated the IL-33/TSLP/NF-B signaling pathway, which is involved in regulating inflammatory cells, immunoglobulin levels, and pro-inflammatory cytokines at the molecular level. Full article
(This article belongs to the Special Issue Allergic Diseases and Metabolism)
Show Figures

Figure 1

16 pages, 1083 KB  
Article
HPLC-DAD-MS Identification and Quantification of Phenolic Components in Japanese Knotweed and American Pokeweed Extracts and Their Phytotoxic Effect on Seed Germination
by Maja Mikulic-Petkovsek, Robert Veberic, Metka Hudina and Eva Misic
Plants 2022, 11(22), 3053; https://doi.org/10.3390/plants11223053 - 11 Nov 2022
Cited by 13 | Viewed by 2547
Abstract
We performed a detailed HPLC-MSn analysis of the phenolic compounds from the extracts of two invasive alien plant species (IAPS): Japanese knotweed (Fallopia japonica (Houtt.) Ronse Decr.) and American pokeweed (Phytolacca americana L.). The major phenolic groups were hydroxycinnamic acids and [...] Read more.
We performed a detailed HPLC-MSn analysis of the phenolic compounds from the extracts of two invasive alien plant species (IAPS): Japanese knotweed (Fallopia japonica (Houtt.) Ronse Decr.) and American pokeweed (Phytolacca americana L.). The major phenolic groups were hydroxycinnamic acids and flavanols in Japanese knotweed (J. knotweed) and flavonols, hydroxycinnamic acids, and stilbenes in American pokeweed (A. pokeweed). We investigated the influence of solvent type and extraction time on the extraction efficiency of the phenolic compounds. The solvent 80% methanol had a higher polyphenolic extraction efficiency than water, since 14.5 times more flavonols and 2.3 times more stilbenes were extracted from J. knotweed and 5.2 times more flavonols and 2.6 times more stilbenes were extracted from A. pokeweed. In contrast, with water, we obtained a 52% higher hydroxycinnamic acids (HCA) content from J. knotweed. Hydroxycinnamic acids were best extracted in water after 24 h, flavanols after 12 h, stilbenes between 12 and 24 h, and flavonol glycosides after 48 h of extraction. We also tested the allelopathic effect of the aqueous extract of A. pokeweed and J. knotweed on seed germination and shoot and root growth of perennial ryegrass. The results showed that the water extract of J. knotweed resulted in 38 to 48% lower seed germination of perennial ryegrass, and the extract of A. pokeweed resulted in 83 to 90% lower seed germination. The phytotoxic effect of the extract of J. knotweed and A. pokeweed was also reflected in a characteristic reduced growth of shoots and roots of perennial ryegrass. The phytotoxic action of IAPS could also be applied for beneficial purposes, since this would be an effective strategy for their control and a reduction of their spread in the environment. Full article
(This article belongs to the Special Issue Alternatives for a Sustainable Management of Invasive Plant Species)
Show Figures

Figure 1

13 pages, 1658 KB  
Review
Allelopathy of Knotweeds as Invasive Plants
by Hisashi Kato-Noguchi
Plants 2022, 11(1), 3; https://doi.org/10.3390/plants11010003 - 21 Dec 2021
Cited by 46 | Viewed by 7020
Abstract
Perennial herbaceous Fallopia is native to East Asia, and was introduced to Europe and North America in the 19th century as an ornamental plant. Fallopia has been spreading quickly and has naturalized in many countries. It is listed in the world’s 100 worst [...] Read more.
Perennial herbaceous Fallopia is native to East Asia, and was introduced to Europe and North America in the 19th century as an ornamental plant. Fallopia has been spreading quickly and has naturalized in many countries. It is listed in the world’s 100 worst alien species. Fallopia often forms dense monospecies stands through the interruption of the regeneration process of indigenous plant species. Allelopathy of Japanese knotweed (Fallopia japonica), giant knotweed (Fallopia sachalinensis), and Bohemian knotweed (Fallopia x bohemica) has been reported to play an essential role in its invasion. The exudate from their roots and/or rhizomes, and their plant residues inhibited the germination and growth of some other plant species. These knotweeds, which are non-mycorrhizal plants, also suppressed the abundance and species richness of arbuscular mycorrhizal fungi (AMF) in the rhizosphere soil. Such suppression was critical for most territorial plants to form the mutualism with AMF, which enhances the nutrient and water uptake, and the tolerance against pathogens and stress conditions. Several allelochemicals such as flavanols, stilbenes, and quinones were identified in the extracts, residues, and rhizosphere soil of the knotweeds. The accumulated evidence suggests that some of those allelochemicals in knotweeds may be released into the rhizosphere soil through the decomposition process of their plant parts, and the exudation from their rhizomes and roots. Those allelochemicals may inhibit the germination and growth of native plants, and suppress the mycorrhizal colonization of native plants, which provides the knotweeds with a competitive advantage, and interrupts the regeneration processes of native plants. Therefore, allelopathy of knotweeds may contribute to establishing their new habitats in the introduced ranges as invasive plant species. It is the first review article focusing on the allelopathy of knotweeds. Full article
(This article belongs to the Special Issue Alien Flora—Adaptation to Novel Ecosystems and Traits for Success)
Show Figures

Graphical abstract

Back to TopTop