Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Euryale ferox seed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1137 KiB  
Article
Ecological vs. Traditional Aquaculture: Carbon Footprint and Economic Performance of Integrated Fish–Euryale ferox Systems
by Jiayin Ling, Guozheng Li, Guodong Yuan, Liang Xiao, Liwen Shao, Yaoyang Chen and Jianqiao Qin
Sustainability 2025, 17(11), 4927; https://doi.org/10.3390/su17114927 - 27 May 2025
Viewed by 516
Abstract
This study examined the carbon footprints of freshwater fish farming and Euryale ferox seed (gorgon fruit) production, comparing integrated ecological mode and traditional farming practices based on ISO 14067 and PAS 2050 standards. The ecological mode achieved a 24% lower carbon footprint per [...] Read more.
This study examined the carbon footprints of freshwater fish farming and Euryale ferox seed (gorgon fruit) production, comparing integrated ecological mode and traditional farming practices based on ISO 14067 and PAS 2050 standards. The ecological mode achieved a 24% lower carbon footprint per unit product than traditional practices, driven by reduced material and energy use. Key emission sources included aeration electricity, feed, and wastewater treatment for fish farming, fertilizers, insecticides, and drainage energy for E. ferox planting. The integrated model combining high-density fish ponds and E. ferox pond reduced the overall carbon footprint (Micropterus salmoides: 4.342 kg CO2-eq/kg; E. ferox seed: 0.208 kg CO2-eq/kg) compared to traditional practices (Micropterus salmoides: 5.672 kg CO2-eq/kg; E. ferox seed: 0.297 kg CO2-eq/kg). It also lowered production costs, increased profits, and mitigated GHG emissions by using E. ferox and lotus ponds as treatment facilities and reducing fertilizer use. The ecological model showed lower unit costs and higher profits (Micropterus salmoides: 4.01 RMB/kg vs. 2.46 RMB/kg; E. ferox seed: 2.53 RMB/kg vs. 1.93 RMB/kg) than those of the traditional mode. This study underscores the potential of ecologically integrated modes to mitigate water pollution and carbon emissions in agriculture, offering a sustainable solution to meet the rising demand for aquatic products. Full article
(This article belongs to the Special Issue Environmental and Economic Sustainability in Agri-Food System)
Show Figures

Graphical abstract

12 pages, 3161 KiB  
Article
Profiling and Discrimination of Euryale Ferox Seeds from Different Processing Methods Using Liquid Chromatography High-Resolution Mass Spectrometry Combined with Molecular Networking and Statistical Analysis
by Xiaoyu Xie, Chuntao Zeng, Ruonan Zhang, Wenting Zhu, Huijie Li and Zhi Huang
Metabolites 2025, 15(4), 225; https://doi.org/10.3390/metabo15040225 - 25 Mar 2025
Viewed by 556
Abstract
Background: Euryale ferox seeds (EFSs) serve both medicinal and culinary purposes. They possess high nutritional value and are rich in polysaccharides, polyphenols, glycolipids, cyclic peptides, and other beneficial components. EFSs are known for their effects in tonifying the kidneys and strengthening essence, invigorating [...] Read more.
Background: Euryale ferox seeds (EFSs) serve both medicinal and culinary purposes. They possess high nutritional value and are rich in polysaccharides, polyphenols, glycolipids, cyclic peptides, and other beneficial components. EFSs are known for their effects in tonifying the kidneys and strengthening essence, invigorating the spleen and alleviating diarrhea, as well as removing dampness and leucorrhea. Processing can alter the chemical composition of EFSs, with different methods yielding varying effects on their chemical makeup and, consequently, their efficacy. However, to date, no studies have systematically investigated the overall chemical composition of EFSs using different processing methods. Methods: In this study, we employed liquid chromatography high-resolution mass spectrometry (LC-HRMS) to identify the compounds in EFSs by searching databases and Global Natural Products Social Molecular Networking (GNPS), and we comprehensively explored the changes in the chemical composition of EFSs resulting from various processing methods via statistical analysis. Results: A total of 438 compounds were identified from EFSs, of which 283 were identified through database searches and 155 were identified via GNPS propagation. Statistical analysis revealed 32 and 38 differential compounds in dry-fried Euryale ferox seeds (DFEFSs) and bran-fried Euryale ferox seeds (BFEFSs), respectively. Additionally, we found a significant increase in the lipid content of the fried EFSs. Conclusions: This study provides valuable data to support the quality evaluation of processed EFSs and contributes to the research on the material basis of their medicinal efficacy. Full article
Show Figures

Figure 1

29 pages, 4510 KiB  
Review
The Ethnopharmacological, Phytochemical, and Pharmacological Review of Euryale ferox Salisb.: A Chinese Medicine Food Homology
by Jiahui Jiang, Haiyan Ou, Ruiye Chen, Huiyun Lu, Longjian Zhou and Zhiyou Yang
Molecules 2023, 28(11), 4399; https://doi.org/10.3390/molecules28114399 - 28 May 2023
Cited by 19 | Viewed by 5977
Abstract
Euryale ferox Salisb. (prickly water lily) is the only extent of the genus Euryale that has been widely distributed in China, India, Korea, and Japan. The seeds of E. ferox (EFS) have been categorized as superior food for 2000 years in China, based [...] Read more.
Euryale ferox Salisb. (prickly water lily) is the only extent of the genus Euryale that has been widely distributed in China, India, Korea, and Japan. The seeds of E. ferox (EFS) have been categorized as superior food for 2000 years in China, based on their abundant nutrients including polysaccharides, polyphenols, sesquineolignans, tocopherols, cyclic dipeptides, glucosylsterols, cerebrosides, and triterpenoids. These constituents exert multiple pharmacological effects, such as antioxidant, hypoglycemic, cardioprotective, antibacterial, anticancer, antidepression, and hepatoprotective properties. There are very few summarized reports on E. ferox, albeit with its high nutritional value and beneficial activities. Therefore, we collected the reported literature (since 1980), medical classics, database, and pharmacopeia of E. ferox, and summarized the botanical classification, traditional uses, phytochemicals, and pharmacological effects of E. ferox, which will provide new insights for further research and development of EFS-derived functional products. Full article
Show Figures

Figure 1

21 pages, 4063 KiB  
Article
Treatment of Diabetes Nephropathy in Mice by Germinating Seeds of Euryale ferox through Improving Oxidative Stress
by Yani Wang, Huaibo Yuan and Yidi Wang
Foods 2023, 12(4), 767; https://doi.org/10.3390/foods12040767 - 9 Feb 2023
Cited by 6 | Viewed by 3279
Abstract
Diabetes can cause severe kidney disease. Euryale ferox seeds (Gordon Euryale) have known antioxidant, hypoglycemic, and renal protection effects. Methanol extracts of Gordon Euryale were produced from ungerminated and germinated seeds. The effect of germination on polyphenol and flavonoid content was [...] Read more.
Diabetes can cause severe kidney disease. Euryale ferox seeds (Gordon Euryale) have known antioxidant, hypoglycemic, and renal protection effects. Methanol extracts of Gordon Euryale were produced from ungerminated and germinated seeds. The effect of germination on polyphenol and flavonoid content was investigated by Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Three doses of ungerminated seed extract (EKE) and germinated seed extract (GEKE) were administered to diabetic mice by gavage to explore the treatment-dependent improvement of oxidative stress, metabolic disorder, and kidney disease. Seed germination led to a 1.7 times increase in total phenol content in the extract, and the flavonoid content was increased by 1.9 times. Germination greatly increased the contents of 29 polyphenols and 1 terpenoid. At the same dose, GEKE more strongly improved hyperglycemia, abnormal lipid metabolism, and renal tissue lesions (as confirmed by histology) in the diabetic mice than EKE did. In diabetic mice receiving treatment, kidney microalbunminuria (ALB), blood urea nitrogen (BUN), serum creatinine (Scr), malondialdehyde (MDA), and glutathione (GSH) were all decreased, while activity of catalase (CAT), superoxide dismutase (SOD), and serum total antioxidant capacity (T-AOC) were increased. Both EKE and GEKE can improve diabetes and kidney disease by improving hyperglycemia, oxidative stress, and kidney physiological indicators and regulating the Keap1/Nrf2/HO-1 and AMPK/mTOR pathways. However, in both pathways, GEKE is more effective. The purpose of this study was to explore the effects of GEKE and EKE treatment on antioxidant defense and metabolic capacity of diabetic animals. Germination provides a suitable strategy to improve the medicinal value of these natural plant-based products. Full article
(This article belongs to the Special Issue Health Foods: Molecular Nutrition Mechanisms and Product Development)
Show Figures

Figure 1

15 pages, 1772 KiB  
Article
Effect of Thermal Treatment on the Physicochemical, Ultrastructural, and Antioxidant Characteristics of Euryale ferox Seeds and Flour
by Qin Li, Hong-Tao Li, Yi-Peng Bai, Ke-Rui Zhu and Ping-Hsiu Huang
Foods 2022, 11(16), 2404; https://doi.org/10.3390/foods11162404 - 10 Aug 2022
Cited by 21 | Viewed by 3035
Abstract
Euryale ferox seeds (EFS) were less gelatinized, preventing the release of nutrients and functional compounds, resulting in limited applications in meals and the food industry. Nutraceutical importance of EFS includes starch, protein, lipids, 20 amino acids, minerals, and vitamins (C, E, and beta [...] Read more.
Euryale ferox seeds (EFS) were less gelatinized, preventing the release of nutrients and functional compounds, resulting in limited applications in meals and the food industry. Nutraceutical importance of EFS includes starch, protein, lipids, 20 amino acids, minerals, and vitamins (C, E, and beta carotene). This study aimed to evaluate the effect of three different thermal treatments on EFS’s physicochemical and nutritional properties and expected to improve its applicability. The results showed that the bulk density, thousand-grain weight, and hardness of thermal treated EFS were significantly decreased (p < 0.05), whereas the maximum decrease was observed in the industrial infrared heating-assisted fluidized bed (IHFH) treatment. Meanwhile, there were more crevices, fissures, and heightened porous structures in EFS between the pericarp and episperm and the endosperm after heat treatment, which facilitated grinding and water absorption. Notably, EFS’s water and oil absorption capacities increased significantly (p < 0.05) with microwave and IHFH treatments. EFS ground’s solubility into powder was increased significantly with thermal treatment (p < 0.05). Furthermore, the functional properties of TPC, TFC, DPPH radical scavenging activity, and reducing power were significantly increased (p < 0.05). In general, the changes in the physicochemical properties of EFS and increased bioactivity were caused by microwave and IHFH treatments. Hence, it might improve the food value of EFS while providing valuable information to researchers and food manufacturers. Full article
Show Figures

Figure 1

12 pages, 2085 KiB  
Article
EfABI4 Transcription Factor Is Involved in the Regulation of Starch Biosynthesis in Euryale ferox Salisb Seeds
by Peng Wu, Yue Zhu, Ailian Liu, Yuhao Wang, Shuping Zhao, Kai Feng and Liangjun Li
Int. J. Mol. Sci. 2022, 23(14), 7598; https://doi.org/10.3390/ijms23147598 - 8 Jul 2022
Cited by 3 | Viewed by 2242
Abstract
Starch is the final product of photosynthesis and the main storage form in plants. Studies have shown that there is a close synergistic regulatory relationship between ABA signal transduction and starch biosynthesis. In this study, we employed RNA sequencing (RNA-Seq) to investigate transcriptomic [...] Read more.
Starch is the final product of photosynthesis and the main storage form in plants. Studies have shown that there is a close synergistic regulatory relationship between ABA signal transduction and starch biosynthesis. In this study, we employed RNA sequencing (RNA-Seq) to investigate transcriptomic changes of the Euryale ferox seeds treated by exogenous ABA. The differentially expressed genes engaged in the “Starch and sucrose” and “TCA cycle” pathway. Furthermore, the key transcription factor EfABI4 in ABA signaling pathway and the key genes of starch biosynthesis (EfDBE1, EfSBE2, EfSS1, EfSS2, EfSS3, EfSS4 and EfGBSS1) were significantly up-regulated. Further, the Euryale ferox plant was treated with ABA, it was found that the total starch content of Euryale ferox seeds at different development stages was significantly higher than that of the control, and the key genes of starch synthesis in Euryale ferox seeds were also significantly up-regulated. Finally, yeast one-hybrid and dual luciferase assay proved that EfABI4 can promote the expression of EfSS1 by directly binding to its promoter. Subcellular localization results showed that EfABI4 protein was located at the nucleus and EfSS1 protein was located in the cytomembrane. These findings revealed that ABA promotes starch synthesis and accumulation by mediating EfABI4 to directly promote EfSS1 gene expression, which is helpful for understanding starch synthesis in seeds. Full article
Show Figures

Figure 1

19 pages, 1486 KiB  
Article
Cellular Anti-Melanogenic Effects of a Euryale ferox Seed Extract Ethyl Acetate Fraction via the Lysosomal Degradation Machinery
by Seung-Hwa Baek, In-Jeong Nam, Hyeong Seob Kwak, Ki-Chan Kim and Sang-Han Lee
Int. J. Mol. Sci. 2015, 16(5), 9217-9235; https://doi.org/10.3390/ijms16059217 - 23 Apr 2015
Cited by 31 | Viewed by 7918
Abstract
The aim of this study was to investigate the effect of ethyl acetate fraction of Euryale ferox seed extracts (Efse-EA) on melanogenesis in immortalized mouse melanocyte cell line, melan-a. Efse-EA showed strong dose-dependent mushroom tyrosinase inhibitory activity. Treatment of melan-a cells with 30 [...] Read more.
The aim of this study was to investigate the effect of ethyl acetate fraction of Euryale ferox seed extracts (Efse-EA) on melanogenesis in immortalized mouse melanocyte cell line, melan-a. Efse-EA showed strong dose-dependent mushroom tyrosinase inhibitory activity. Treatment of melan-a cells with 30 μg/mL Efse-EA produced strong inhibition of cellular tyrosinase and melanin synthesis. Efse-EA significantly reduced the levels of melanogenesis-related proteins, such as tyrosinase, tyrosinase-related proteins 1 and 2, and microphthalmia-associated transcription factor. Because Efse-EA treatment reduced tyrosinase protein levels without changing its mRNA expression, we investigated whether this decrease was related to proteasomal or lysosomal degradation of tyrosinase. We found that chloroquine, a lysosomal proteolysis inhibitor, almost completely abolished both the down-regulation of tyrosinase and the inhibition of melanin synthesis induced by Efse-EA. These results suggested that Efse-EA may contribute to the inhibition of melanogenesis by altering lysosomal degradation of tyrosinase, and that this extract may provide a new cosmetic skin-whitening agent. Full article
Show Figures

Graphical abstract

19 pages, 391 KiB  
Article
Antioxidant and Anti-Fatigue Activities of Phenolic Extract from the Seed Coat of Euryale ferox Salisb. and Identification of Three Phenolic Compounds by LC-ESI-MS/MS
by ChengYing Wu, Rong Chen, Xin Sheng Wang, Bei Shen, Wei Yue and Qinan Wu
Molecules 2013, 18(9), 11003-11021; https://doi.org/10.3390/molecules180911003 - 9 Sep 2013
Cited by 74 | Viewed by 11313
Abstract
This study investigated the antioxidant potential and anti-fatigue effects of phenolics extracted from the seed coat of Euryale ferox Salisb. The in vitro antioxidant potentials, including scavenging DPPH, hydroxyl radical activities and reducing power were evaluated. Antioxidant status in vivo was analyzed by [...] Read more.
This study investigated the antioxidant potential and anti-fatigue effects of phenolics extracted from the seed coat of Euryale ferox Salisb. The in vitro antioxidant potentials, including scavenging DPPH, hydroxyl radical activities and reducing power were evaluated. Antioxidant status in vivo was analyzed by SOD, CAT, GSH-Px activities and the MDA content in liver and kidneys of D-galactose-induced aging mice. The anti-fatigue effect was evaluated using an exhaustive swimming test, along with the determination of LDH, BUN and HG content. The phenolic extract possessed notable antioxidant effects on DPPH, hydroxyl radical scavenging and reducing power. The mice which received the phenolic extract showed significant increases of SOD, CAT (except for in the kidney), GSH-Px activities, and a decrease of MDA content. The average exhaustive swimming time was obviously prolonged. Meanwhile, increase of LDH content and decrease of BUN content were observed after mice had been swimming for 15 min. The HG storage of mice was improved in the high and middle dose extract groups compared with the normal group. The contents of total phenols and gallic acid of the extract were determined. Three compounds in the extract were identified as 5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-chroman-4-one, 5,7,4-trihydroxyflavanone and buddlenol E. These results suggest that the extract of E. ferox is a promising source of natural antioxidants and anti-fatigue material for use in functional foods and medicines. Full article
Show Figures

Figure 1

Back to TopTop