Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Ethiopian pea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1312 KiB  
Article
Mineral Fertilizer Demand for Optimum Biological Nitrogen Fixation and Yield Potentials of Legumes in Northern Ethiopia
by Shimbahri Mesfin, Girmay Gebresamuel, Mitiku Haile, Amanuel Zenebe and Girma Desta
Sustainability 2020, 12(16), 6449; https://doi.org/10.3390/su12166449 - 10 Aug 2020
Cited by 24 | Viewed by 4093
Abstract
Farmers in Northern Ethiopia integrate legumes in their cropping systems to improve soil fertility. However, biological nitrogen fixation (BNF) potentials of different legumes and their mineral nitrogen (N) and phosphorus (P) demands for optimum BNF and yields are less studied. This study aimed [...] Read more.
Farmers in Northern Ethiopia integrate legumes in their cropping systems to improve soil fertility. However, biological nitrogen fixation (BNF) potentials of different legumes and their mineral nitrogen (N) and phosphorus (P) demands for optimum BNF and yields are less studied. This study aimed to generate the necessary knowledge to enable development of informed nutrient management recommendations, guide governmental public policy and assist farmer decision making. The experiment was conducted at farmers’ fields with four N levels, three P levels, and three replications. Nodule number and dry biomass per plant were assessed. Nitrogen difference method was used to estimate the amount of fixed N by assuming legume BNF was responsible for differences in plant N and soil mineral N measured between legume treatments and wheat. The result revealed that the highest grain yields of faba bean (2531 kg ha−1), field pea (2493 kg ha−1) and dekeko (1694 kg ha−1) were recorded with the combined application of 20 kg N ha−1 and 20 kg P ha−1. Faba bean, field pea and dekeko also fixed 97, 38 and 49 kg N ha−1, respectively, with the combined application of 20 kg N ha−1 and 20 kg P ha−1; however, lentil fixed 20 kg ha−1 with the combined application of 10 kg N ha−1 and 10 kg P ha−1. The average BNF of legumes in the average of all N and P interaction rates were 67, 23, 32 and 16 kg N ha−1 for faba bean, field pea, dekeko and lentil, respectively. Moreover, faba bean, field pea, dekeko and lentil accumulated a surplus soil N of 37, 21, 26 and 13 kg ha−1, respectively, over the wheat plot. The application of 20 kg N ha−1 and 20 kg P ha−1 levels alone and combined significantly (p < 0.05) increased the nodulation, BNF and yield of legumes; however, 46 kg N ha-1 significantly decreased BNF. This indicated that the combination of 20 kg N ha−1 and 20 kg P ha−1 levels is what mineral fertilizer demands to optimize the BNF and yield of legumes. The results of this study can lead to the development of policy and farmer guidelines, as intensification of the use of legumes supplied with starter N and P fertilizers in Northern Ethiopian cropping systems has the multiple benefits of enhancing inputs of fixed N, improving the soil N status for following crops, and becoming a sustainable option for sustainable soil fertility management practice. Full article
(This article belongs to the Special Issue Sustainable Applications in Agriculture)
Show Figures

Figure 1

20 pages, 5777 KiB  
Article
Molecular Evidence for Two Domestication Events in the Pea Crop
by Oldřich Trněný, Jan Brus, Iveta Hradilová, Abhishek Rathore, Roma R. Das, Pavel Kopecký, Clarice J. Coyne, Patrick Reeves, Christopher Richards and Petr Smýkal
Genes 2018, 9(11), 535; https://doi.org/10.3390/genes9110535 - 6 Nov 2018
Cited by 44 | Viewed by 8224
Abstract
Pea, one of the founder crops from the Near East, has two wild species: Pisum sativum subsp. elatius, with a wide distribution centered in the Mediterranean, and P. fulvum, which is restricted to Syria, Lebanon, Israel, Palestine and Jordan. Using genome wide [...] Read more.
Pea, one of the founder crops from the Near East, has two wild species: Pisum sativum subsp. elatius, with a wide distribution centered in the Mediterranean, and P. fulvum, which is restricted to Syria, Lebanon, Israel, Palestine and Jordan. Using genome wide analysis of 11,343 polymorphic single nucleotide polymorphisms (SNPs) on a set of wild P. elatius (134) and P. fulvum (20) and 74 domesticated accessions (64 P. sativum landraces and 10 P. abyssinicum), we demonstrated that domesticated P. sativum and the Ethiopian pea (P. abyssinicum) were derived from different P. elatius genepools. Therefore, pea has at least two domestication events. The analysis does not support a hybrid origin of P. abyssinicum, which was likely introduced into Ethiopia and Yemen followed by eco-geographic adaptation. Both P. sativum and P. abyssinicum share traits that are typical of domestication, such as non-dormant seeds. Non-dormant seeds were also found in several wild P. elatius accessions which could be the result of crop to wild introgression or natural variation that may have been present during pea domestication. A sub-group of P. elatius overlaps with P. sativum landraces. This may be a consequence of bidirectional gene-flow or may suggest that this group of P. elatius is the closest extant wild relative of P. sativum. Full article
(This article belongs to the Special Issue Genomics of Plant Domestication and Crop Evolution)
Show Figures

Figure 1

Back to TopTop