Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Erythrosine B (E127)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7469 KiB  
Article
Photo- and Sono-Active Food Colorants Inactivating Bacteria
by Efrat Hochma, Iryna Hovor, Faina Nakonechny and Marina Nisnevitch
Int. J. Mol. Sci. 2023, 24(20), 15126; https://doi.org/10.3390/ijms242015126 - 12 Oct 2023
Cited by 7 | Viewed by 1952
Abstract
Food colorants are commonly used as excipients in pharmaceutical and nutraceutical fields, but they have a wide range of other potential applications, for instance, as cytotoxic drugs or mediators of physical antimicrobial treatments. The photodynamic antibacterial activity of several edible food colorants is [...] Read more.
Food colorants are commonly used as excipients in pharmaceutical and nutraceutical fields, but they have a wide range of other potential applications, for instance, as cytotoxic drugs or mediators of physical antimicrobial treatments. The photodynamic antibacterial activity of several edible food colorants is reported here, including E127, E129, E124, E122, E133, and E150a, alongside Rhein, a natural lipophilic antibacterial and anticancer compound found in medicinal plants. Minimal inhibitory concentration (MIC) values for S. aureus and E. coli showed that E127 and Rhein were effective against both bacteria, while other colorants exhibited low activity against E. coli. In some cases, dark pre-incubation of the colorants with Gram-positive S. aureus increased their photodynamic activity. Adding Rhein to E127 increased the photodynamic activity of the latter in a supportive mode. Optional sensing mechanism pathways of combined E127/Rhein action were suggested. The antibacterial activity of the studied colorants can be ranged as follows: E127/Rhein >> E127 >> E150a > E122 > E124 >> E129 ≈ E133. E127 was also found to exhibit photodynamic properties. Short ultrasonic treatment before illumination caused intensification of E127 photodynamic activity against E. coli when applied alone and especially in combination with Rhein. Food colorants exhibiting photo- and sonodynamic properties may have good potential in food preservation. Full article
(This article belongs to the Special Issue Recent Advances in the Development of Newer Antimicrobial Agents)
Show Figures

Figure 1

15 pages, 12175 KiB  
Article
Design and Architecture of P-O Co-Doped Porous g-C3N4 by Supramolecular Self-Assembly for Enhanced Hydrogen Evolution
by Ximiao Zhu, Fan Yang, Jinhua Liu, Guangying Zhou, Dongdong Chen, Zhang Liu and Jianzhang Fang
Catalysts 2022, 12(12), 1583; https://doi.org/10.3390/catal12121583 - 5 Dec 2022
Cited by 7 | Viewed by 2147
Abstract
A novel phosphorus and oxygen co-doped graphitic carbon nitride (sheetP-O-CNSSA) photocatalyst was successfully synthesized and applied for H2 evolution under visible light. In the synthesis process of sheetP-O-CNSSA, the supramolecular complex was developed by the [...] Read more.
A novel phosphorus and oxygen co-doped graphitic carbon nitride (sheetP-O-CNSSA) photocatalyst was successfully synthesized and applied for H2 evolution under visible light. In the synthesis process of sheetP-O-CNSSA, the supramolecular complex was developed by the self-assembly and copolymerization reaction among melamine, cyanuric acid (CA) and trithiocyanuric acid (TCA) to act as g-C3N4 precursors, while (NH4)2HPO4 was applied as P and O precursors for element doping. The chemical structures, morphologies, and optical properties of the sheetP-O-CNSSA were characterized by a series of measurements, i.e., XRD, FT-IR, SEM, TEM, UV-vis DRS, and PL. The results suggested that the introduction of P and O elements could enhance the separation and migration efficiency of photogenerated electrons and holes in the energy band of g-C3N4. The photocatalytic tests over Erythrosin B (EB) sensitized sheetP-O-CNSSA indicated that the hydrogen evolution was greatly enhanced compared with other catalysts and non-sensitized sheetP-O-CNSSA under visible light irradiation. Finally, a possible dye-sensitized photocatalysis mechanism was also proposed on the basis of the as-obtained results. Full article
Show Figures

Figure 1

18 pages, 3924 KiB  
Article
Effect of Sensitization on the Electrochemical Properties of Nanostructured NiO
by Matteo Bonomo, Daniele Gatti, Claudia Barolo and Danilo Dini
Coatings 2018, 8(7), 232; https://doi.org/10.3390/coatings8070232 - 29 Jun 2018
Cited by 7 | Viewed by 4964
Abstract
Screen-printed NiO electrodes were sensitized with 11 different dyes and the respective electrochemical properties were analyzed in a three-electrode cell with the techniques of cyclic voltammetry and electrochemical impedance spectroscopy. The dye sensitizers of NiO were organic molecules of different types (e.g., squaraines, [...] Read more.
Screen-printed NiO electrodes were sensitized with 11 different dyes and the respective electrochemical properties were analyzed in a three-electrode cell with the techniques of cyclic voltammetry and electrochemical impedance spectroscopy. The dye sensitizers of NiO were organic molecules of different types (e.g., squaraines, coumarins, and derivatives of triphenyl-amines and erythrosine B), which were previously employed as sensitizers of the same oxide in dye-sensitized solar cells of p-type (p-DSCs). Depending on the nature of the sensitizer, diverse types of interactions occurred between the immobilized sensitizer and the screen-printed NiO electrode at rest and under polarization. The impedance data recorded at open circuit potential were interpreted in terms of two different equivalent circuits, depending on the eventual presence of the dye sensitizer on the mesoporous electrode. The fitting parameter of the charge transfer resistance through the electrode/electrolyte interface varied in accordance to the differences of the passivation action exerted by the various dyes against the electrochemical oxidation of NiO. Moreover, it has been observed that the resistive term RCT associated with the process of dark electron transfer between the dye and NiO substrate is strictly correlated to the overall efficiency of the photoconversion (η) of the corresponding p-DSC, which employs the same dye-sensitized electrode as photocathode. Full article
(This article belongs to the Special Issue Thin Films for Energy Harvesting, Conversion, and Storage)
Show Figures

Figure 1

Back to TopTop